Skip to main content
Log in

Quark sea structure functions of the nucleon in a statistical model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Within a statistical model of linear confined quarks we obtain the flavor asymmetry and corresponding structure function of the nucleon. The model parameters are fixed by the experimental available data. The temperature parameter is adjusted by the Gottfried sum rule violation and the chemical potentials by the corresponding up (u) and down (d) quark normalizations in the nucleon. The light antiquark and quark distributions in the proton, given by d̄/ū, d/u and d̄-ū, as well as the neutron to proton ratio of the structure functions, extracted from the experimental data, are well fitted by the model. As the quark-confining strengths should be flavor dependent, a mechanism is introduced in the model to adjust the corresponding distribution, in order to improve the comparison obtained for the sea-quark asymmetries in the nucleon with the available experimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Peng et al., Phys. Rev. D 58, 092004 (1998)

    Article  ADS  Google Scholar 

  2. E.A. Hawker et al., Phys. Rev. Lett. 80, 3715 (1998)

    Article  ADS  Google Scholar 

  3. K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967)

    Article  ADS  Google Scholar 

  4. F. Carvalho, F.O. Durães, F.S. Navarra, M. Nielsen, Phys. Rev. D 60, 094015 (1999)

    Article  ADS  Google Scholar 

  5. M. Alberg, E.M. Henley, Nucl. Phys. A 663, 301 (2000)

    Article  ADS  Google Scholar 

  6. E.J. Eichten, I. Innchliffe, C. Quigg, Phys. Rev. D 45, 2269 (1992)

    Article  ADS  Google Scholar 

  7. E.M. Henley, G.A. Miller, Phys. Lett. B 251, 453 (1990)

    Article  ADS  Google Scholar 

  8. S. Kumano, Phys. Rev. D 43, 59 (1991)

    Article  ADS  Google Scholar 

  9. S. Kumano, Phys. Rev. D 43, 3067 (1991)

    Article  ADS  Google Scholar 

  10. A.I. Signal, A.W. Schreiber, A.W. Thomas, Mod. Phys. Lett. A 6, 271 (1991)

    Article  ADS  Google Scholar 

  11. H. Holtmann, A. Szczurek, J. Speth, Nucl. Phys. A 569, 631 (1996)

    Article  ADS  Google Scholar 

  12. S. Kumano, Phys. Rep. 303, 183 (1998)

    Article  Google Scholar 

  13. G.T. Garvey, J.-C. Peng, Prog. Part. Nucl. Phys. 47, 203 (2001)

    Article  ADS  Google Scholar 

  14. R.D. Field, R.P. Feynman, Phys. Rev. D 15, 2590 (1977)

    Article  ADS  Google Scholar 

  15. C. Bourrely, F. Buccella, J. Soffer, Eur. Phys. J. C 23, 487 (2002)

    Article  ADS  Google Scholar 

  16. C. Bourrely, F. Buccella, J. Soffer, Eur. Phys. J. C 41, 327 (2005)

    Article  ADS  Google Scholar 

  17. J. Cleymans, R.L. Thews, Z. Phys. C 37, 315 (1988)

    Article  Google Scholar 

  18. E. Mac, E. Ugaz, Z. Phys. C 43, 655 (1989)

    Article  ADS  Google Scholar 

  19. L.A. Trevisan, T. Frederico, L. Tomio, Eur. Phys. J. C 11, 351 (1999)

    Article  ADS  Google Scholar 

  20. L.W. Whitlow et al., Phys. Lett. B 282, 475 (1992)

    Article  ADS  Google Scholar 

  21. L.L. Frankfurt, M.I. Strikman, Phys. Rep. 160, 235 (1988)

    Article  ADS  Google Scholar 

  22. S. Liuti, F. Gross, Phys. Lett. B 356, 157 (1995)

    Article  ADS  Google Scholar 

  23. W. Melnitchouk, A.W. Thomas, Phys. Lett. B 377, 11 (1996)

    Article  ADS  Google Scholar 

  24. European Muon Collaboration, J.J. Aubert et al., Nucl. Phys. B 293, 740 (1987)

    Article  ADS  Google Scholar 

  25. W. Melnitchouk, J. Speth, A.W. Thomas, Phys. Lett. B 435, 420 (1998)

    Article  ADS  Google Scholar 

  26. P. Souder, in: Proceedings of the workshop on CEBAF at Higher Energies CEBAF, Newport News, 1994

  27. R. Michaels, in: Physics and Instrumentation with 6–12 GeV Beams, Jefferson Lab, p. 347 (1998)

  28. I.R. Afnan et al., Phys. Rev. C 68, 035201 (2003)

    Article  ADS  Google Scholar 

  29. R.P. Feynman, Photon Hadron Interactions (Benjamin, Reading, Massachusetts, 1972)

    Google Scholar 

  30. F.E. Close, A.W. Thomas, Phys. Lett. B 212, 227 (1988)

    Article  ADS  Google Scholar 

  31. W. Melnitchouk, Phys. Rev. Lett. 86, 35 (2001)

    Article  ADS  Google Scholar 

  32. L.A. Trevisan, L. Tomio, Nucl. Phys. A 689, 485c (2001)

    Article  ADS  Google Scholar 

  33. E. Eichten, I. Hinchliffe, K. Lane, C. Quigg, Rev. Mod. Phys. 56, 579 (1984)

    Article  ADS  Google Scholar 

  34. M. Diemoz et al., Z. Phys. C 39, 21 (1988)

    Article  ADS  Google Scholar 

  35. A.D. Martin, R. Roberts, W.J. Stirling, Phys. Rev. D 50, 6734 (1994)

    Article  ADS  Google Scholar 

  36. CTEQ Collaboration, H.L. Lai et al., Phys. Rev. D 51, 4763 (1995)

    Article  ADS  Google Scholar 

  37. G.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 35, 1416 (1975)

    Article  ADS  Google Scholar 

  38. S.J. Brodsky, M. Burkardt, I. Schmidt, Nucl. Phys. B 441, 197 (1995)

    Article  ADS  Google Scholar 

  39. J. Gomez et al., Phys. Rev. D 49, 4348 (1994)

    Article  ADS  Google Scholar 

  40. H. Abramowicz et al., Z. Phys. C 25, 29 (1983)

    Article  ADS  Google Scholar 

  41. P.L. Ferreira, J.A. Helayel, N. Zagury, Nuovo Cim. A 55, 215 (1980)

    Article  ADS  Google Scholar 

  42. A.I. Signal, A.W. Thomas, Phys. Rev. D 40, 2832 (1989)

    Article  ADS  Google Scholar 

  43. H. Weigel, Phys. Rev. D 55, 6910 (1997)

    Article  ADS  Google Scholar 

  44. M. Wakamatsu, Phys. Rev. D 67, 034005 (2003)

    Article  ADS  Google Scholar 

  45. H. Dahiya, M. Gupta, Eur. Phys. J. C 52, 571 (2007)

    Article  ADS  Google Scholar 

  46. J. Alwall, G. Ingelman, Phys. Rev. D 71, 094015 (2005)

    Article  ADS  Google Scholar 

  47. P. Amaudruz et al., Phys. Rev. Lett. 66, 2712 (1991)

    Article  ADS  Google Scholar 

  48. M. Arneodo et al., Phys. Rev. D 50, R1 (1994)

    Article  ADS  Google Scholar 

  49. F. Olness et al., Eur. Phys. J. C 40, 145 (2005)

    Article  ADS  Google Scholar 

  50. C. Bourrely, J. Soffer, F. Buccella, Phys. Lett. B 648, 39 (2007)

    Article  ADS  Google Scholar 

  51. R.G. Roberts, The Structure of the Proton – Deep Inelastic Scattering (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  52. A.O. Bazarko et al., Z. Phys. C 65, 189 (1995)

    Article  ADS  Google Scholar 

  53. A.E. Dorokhov, N.I. Kochelev, Y.A. Zubov, Sov. J. Part. Nucl. 23, 522 (1992)

    Google Scholar 

  54. F. Halzen, A.D. Martin, Quarks and Leptons – An Introductory Course in Modern Particle Physics (Wiley, New York, 1984), p. 215

    Google Scholar 

  55. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  56. H.R. Christiansen, J. Magnin, Phys. Lett. B 445, 8 (1998)

    Article  ADS  Google Scholar 

  57. J. Magnin, H.R. Christiansen, Phys. Rev. D 61, 054006 (2000)

    Article  ADS  Google Scholar 

  58. T. Frederico, G. Miller, Phys. Rev. D 50, 210 (1994)

    Article  ADS  Google Scholar 

  59. M. Glück, E. Reya, I. Schiebein, Eur. Phys. J. C 10, 313 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tomio.

Additional information

PACS

11.30.Hv; 14.20.Dh; 12.39.Ki; 12.40.Ee; 11.55.Hx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevisan, L., Mirez, C., Frederico, T. et al. Quark sea structure functions of the nucleon in a statistical model. Eur. Phys. J. C 56, 221–229 (2008). https://doi.org/10.1140/epjc/s10052-008-0651-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0651-1

Keywords

Navigation