Skip to main content
Log in

Structure of Baryons in a Semi-Relativistic Quark Model

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The spectroscopy of light and strange baryons and elastic electromagnetic form factors of nucleon have been studied through a simple semi-relativistic quark model. For SU(6)-invariant part of spectrum, we treated the baryons as a spin-independent three-body bound system and presented the exact analytical solution of three-body Klein–Gordon equation. Considering the SU(6)-invariant interaction as a combination of scalar linear and vector Coulombic-like potentials, we obtained analytical formulas for energy levels and the hyperradial wave functions which have been employed in the calculations of the mass spectrum of baryons, electromagnetic elastic form factors, and charge radii of nucleon. The evaluated observables have been compared with experimental data, and it has been shown that the present model leads to a fairly good description of the observed resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Bijker, F. Iachello, A. Leviatan, Algebraic Models of Hadron Structure. I. Nonstrange Baryons. Ann. Phys. (N.Y.) 236, 69–116 (1994)

    Article  ADS  Google Scholar 

  2. M. Ferraris, M. MGiannini, M. Pizzo, E. Santopinto, L. Tiator, A three-body force model for the baryon spectrum. Phys. Lett. B 364, 231–238 (1995)

    Article  ADS  Google Scholar 

  3. L. YaGlozman, D.O. Riska, The spectrum of the nucleons and the strange hyperons and chiral dynamics. Phys. Rep. C 268, 263–303 (1996)

    Article  ADS  Google Scholar 

  4. S. Capstick, W. Roberts, Quark models of baryon masses and decays. Prog. Part. Nucl. Phys. 45, S241–S331 (2000)

    Article  ADS  Google Scholar 

  5. N. Isgur and G. Karl, Phys. Rev. D18,4187 (1978)

  6. S. Bali et al., Static potentials and glueball masses from QCD simulations with Wilson sea quarks. Phys. Rev. D 62, 054503 (2000)

    Article  ADS  Google Scholar 

  7. Y. Sumino, QCD potential as a “Coulomb-plus-linear” potential. Phys. Lett. B 571, 173–183 (2003)

    Article  ADS  MATH  Google Scholar 

  8. E. Santopinto and J. Ferretti, Phys. Rev. C 92025202(2015)

  9. C. Gutierrez, M. De Sanctis, A study of a relativistic quark-diquark model for the nucleon. Eur. Phys. J. A 50, 169 (2014)

    Article  ADS  Google Scholar 

  10. M. Aslanzadeh, I.J.M. AARajabi, Phys. E. 1550032, 24 (2015)

    Google Scholar 

  11. M. Aslanzadeh, C. AARajabi, J. Phys. 100301, 53 (2015)

    Google Scholar 

  12. M. Aslanzadeh, AARajabi. Can. J. Phys. 94, 236–242 (2016)

    Article  ADS  Google Scholar 

  13. D. Merten, U. Löring, K. Kretzschmar, B. Metsch, H.R. Petry, Electroweak form factors of non-strange baryons. Eur. Phys. J. A 14, 477–489 (2002)

    Article  ADS  Google Scholar 

  14. M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, Phys. Rev. C 055201, 84 (2011)

    Google Scholar 

  15. M. Aslanzadeh, A.A.R.E. Phys, J. A, 50 (2014)

  16. M. Aslanzadeh, AARajabi,Few-Body. Syst. 57, 145 (2016)

    Google Scholar 

  17. J. Ballot, M. Fabre de la Ripelle, Application of the hyperspherical formalism to the trinucleon bound state problems. Ann. of Phys. (N.Y.) 127, 62–125 (1980)

    Article  ADS  Google Scholar 

  18. Y.A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966)

    Google Scholar 

  19. C.D. Lin, Hyperspherical coordinate approach to atomic and other Coulombic three-body systems. Phys. Rep. 257(1), 1–83 (1995)

    Article  ADS  Google Scholar 

  20. V. Aqulanti, S. Tonzano, J. Chem. Phys. 126, 4066 (2004)

    Article  ADS  Google Scholar 

  21. M.M. Giannini, E. Santopinto, A. Vassallo, An overview of the hypercentral constituent quark model. Prog. Part. Nucl. Phys. 50, 263–272 (2003)

    Article  ADS  Google Scholar 

  22. F. Zernike, H.C. Brinkman, Proc. Kon. Ned. Acad. Wet. 33, 3 (1935)

    Google Scholar 

  23. E. Santopinto, M.M. Giannini, F. Iachello, in Symmetries in Science VII, ed. by B. Gruber. (Plenum Press, New York, 1995), p. 445

    Google Scholar 

  24. J. Ballot, M. Fabre de la Ripelle, Application of the hyperspherical formalism to the trinucleon bound state problems. Ann. of Phys. (N.Y.) 127, 62–125 (1980)

    Article  ADS  Google Scholar 

  25. M.M. Giannini, E. Santopinto, A. Vassallo, A new application of the Gürsey and Radicati mass formula. Eur. Phys. J. A 25, 241–247 (2005)

    Article  ADS  Google Scholar 

  26. F. Güersey, L.A. Radicati, Spin and Unitary Spin Independence of Strong Interactions. Phys. Rev. Lett. 13, 173–175 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  27. K.A, Olive et al. (particle data group collaboration),Chin. Phys. C 090001, 38 (2014)

    Google Scholar 

  28. F.J. Ernst, R.G. Sachs, K.C. Wali, Electromagnetic Form Factors of the Nucleon. Phys. Rev. 119, 1105–1114 (1960)

    Article  ADS  Google Scholar 

  29. A.F. Sill, R.G. Arnold, P.E. Bosted, C.C. Chang, J. Gomez, A.T. Katramatou, C.J. Martoff, G.G. Petratos, A.A. Rahbar, S.E. Rock, Z.M. Szalata, D.J. Sherden, J.M. Lambert, R.M. Lombard-Nelsen, Measurements of elastic electron-proton scattering at large momentum transfer. Phys. Rev. D 48, 29–55 (1993)

    Article  ADS  Google Scholar 

  30. C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Nucleon electromagnetic form factors. Prog. Part. Nucl. Phys. 59, 694–764 (2007)

    Article  ADS  Google Scholar 

  31. K. Hagiwara et al., Physical ReviewD 010001, 66 (2002)

    Google Scholar 

  32. J. Arrington, W Melnitchouk. J A Tjon,Phys. Rev.C 035205, 76 (2007)

    Google Scholar 

  33. R.C. Walker, B.W. Filippone, J. Jourdan, R. Milner, R. McKeown, D. Potterveld, L. Andivahis, R. Arnold, D. Benton, P. Bosted, G. deChambrier, A. Lung, S.E. Rock, Z.M. Szalata, A. Para, F. Dietrich, K. van Bibber, J. Button-Shafer, B. Debebe, R.S. Hicks, S. Dasu, P. de Barbaro, A. Bodek, H. Harada, M.W. Krasny, K. Lang, E.M. Riordan, R. Gearhart, L.W. Whitlow, J. Alster, Measurements of the proton elastic form factors for1≤Q2≤3(GeV/c)2at SLAC. Phys. Rev.D 49, 5671–5689 (1994)

  34. H. Anklinet, al. Physics LettersB 428, 248 (1998)

    Article  ADS  Google Scholar 

  35. a. W Bartelet, Measurement of proton and neutron electromagnetic form factors at squared four-momentum transfers up to 3 (GeV/c)2. Nucl. Phys.B 58, 429–475 (1973)

    Article  ADS  Google Scholar 

  36. A. Lung, L.M. Stuart, P.E. Bosted, L. Andivahis, J. Alster, R.G. Arnold, C.C. Chang, F.S. Dietrich, W.R. Dodge, R. Gearhart, J. Gomez, K.A. Griffioen, R.S. Hicks, C.E. Hyde-Wright, C. Keppel, S.E. Kuhn, J. Lichtenstadt, R.A. Miskimen, G.A. Peterson, G.G. Petratos, S.E. Rock, S.H. Rokni, W.K. Sakumoto, M. Spengos, K. Swartz, Z. Szalata, L.H. Tao, Measurements of the electric and magnetic form factors of the neutron fromQ2=1.75 to 4.00 (GeV/c)2. Phys. Rev. Lett. 70, 718–721 (1993)

    Article  ADS  Google Scholar 

  37. a. G Kubonet, P. Lett, B 524, 26 (2002)

  38. K. Melnikov, T. vanRitbergen, Three-loop slope of the Dirac form factor and the1SLamb shift in hydrogen. Phys. Rev. Lett. 84, 1673–1676 (2000)

    Article  ADS  Google Scholar 

  39. S. Kopeckyet, New measurement of the charge radius of the neutron. al., Phys. Rev. Lett. 74, 2427–2430 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sattari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, F., Aslanzadeh, M. Structure of Baryons in a Semi-Relativistic Quark Model. Braz J Phys 49, 402–411 (2019). https://doi.org/10.1007/s13538-019-00649-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00649-6

Keywords

Navigation