Skip to main content
Log in

Wedgebox analysis of four-lepton events from neutralino pair production at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A ‘wedgebox’ plot is a two-dimensional scatter-plot of two invariant mass quantities. Here pp→e+e-μ+μ-+≠E signature LHC events are analyzed by plotting the di-electron invariant mass versus the di-muon invariant mass. Data sets of such events are obtained across the MSSM input parameter space in realistic event-generator simulations, including cuts designed to remove SM backgrounds. Their study reveals several general features. Firstly, regions in the MSSM input parameter space where a sufficient number of events are expected so as to be able to construct a clear wedgebox plot are delineated. Secondly, the presence of box shapes on a wedgebox plot either indicates the presence of heavy Higgs bosons’ decays or restricts the location to a quite small region of low μ and M2 values, ≲ 200 GeV, a region denoted as the ‘lower island’. In this region, wedgebox plots can be quite complicated and change in pattern rather quickly as one moves around in the (μ,M2) plane. Thirdly, direct neutralino pair production from an intermediate Z0* may only produce a wedge shape since only \(\widetilde{\chi}_2^0\widetilde{\chi}_3^0\) decays can contribute significantly. And fourthly, a double-wedge or wedge-protruding-from-a-box pattern on a wedgebox plot, which results from combining a variety of MSSM production processes, yields three distinct observed endpoints, almost always attributable to \(\widetilde{\chi}_{2,3,4}^0 \to\widetilde{\chi}_1^0 \ell^+\ell^-\) decays, which can be utilized to determine a great deal of information about the neutralino and slepton mass spectra and related MSSM input parameters. Wedge and double-wedge patterns are seen in wedgebox plots in another region of higher μ and M2 values, denoted as the ‘upper island’. Here the pattern is simpler and more stable as one moves across the (μ,M2) input parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bisset, N. Kersting, J. Li, F. Moortgat, S. Moretti, Q.L. Xie, Eur. Phys. J. C 45, 477 (2005)

    Article  ADS  Google Scholar 

  2. M. Bisset, N. Kersting, J. Li, F. Moortgat, S. Moretti, hep-ph/0709.1029

  3. M. Bisset, N. Kersting, J. Li, hep-ph/0709.1031

  4. H. Bachacou, I. Hinchliffe, F.E. Paige, Phys. Rev. D 62, 015009 (2000)

    Article  ADS  Google Scholar 

  5. M. Bisset, P. Roy, S. Raychaudhuri, hep-ph/9602430

  6. H. Baer, X. Tata, Phys. Rev. D 47, 2739 (1993)

    Article  ADS  Google Scholar 

  7. E. Richter-Was, D. Froidevaux, J. Söderqvist, ATLAS Internal Note PHYS-No-108 (1997)

  8. F. Gianotti, ATLAS Internal Note PHYS-No-110 (1997)

  9. G. Polesello, L. Poggioli, E. Richter-Was, J. Söderqvist, ATLAS Internal Note PHYS-No-111 (1997)

  10. J.M. Butterworth, J. Ellis, A.K. Raklev, JHEP 0705, 033 (2007)

    Article  ADS  Google Scholar 

  11. H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata, hep-ph/0001086

  12. H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata, hep-ph/0312045

  13. W.-M. Yao et al., J. Phys. G 33, 1 (2006) [Review of Particle Physics, p. 1127]

    Article  ADS  Google Scholar 

  14. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  15. G. Bian, M. Bisset, N. Kersting, work in progress

  16. G. Corcella et al., JHEP 0101, 010 (2001) [hep-ph/0210213]

    Article  ADS  Google Scholar 

  17. S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, JHEP 0204, 028 (2002)

    Article  ADS  Google Scholar 

  18. CTEQ Collaboration, J. Pumplin et al., JHEP 0207, 012 (2002)

    Article  ADS  Google Scholar 

  19. CTEQ Collaboration, J. Pumplin et al., JHEP 0310, 046 (2003)

    Google Scholar 

  20. http://www-thphys.physics.ox.ac.uk/users/PeterRichardson/HERWIG/isawig.html

  21. A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998)

    Article  MATH  ADS  Google Scholar 

  22. M. Bisset, F. Moortgat, S. Moretti, Eur. Phys. J. C 30, 419 (2003)

    Article  ADS  Google Scholar 

  23. B.P. Roe et al., Nucl. Instrum. Methods A 543, 577 (2005)

    Article  ADS  Google Scholar 

  24. H.J. Yang, B.P. Roe, J. Zhu, Nucl. Instrum. Methods A 555, 370 (2005)

    Article  ADS  Google Scholar 

  25. H. Baer, M. Bisset, D. Dicus, C. Kao, X. Tata, Phys. Rev. D 47, 1062 (1993)

    Article  ADS  Google Scholar 

  26. H. Baer, M. Bisset, C. Kao, X. Tata, Phys. Rev. D 50, 316 (1994)

    Article  ADS  Google Scholar 

  27. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Söderqvist, W. Yao, Phys. Rev. D 55, 5520 (1997)

    Article  ADS  Google Scholar 

  28. ATLAS Detector and Physics Performance Technical Design Report 2, Chapt. 20, CERN-LHCC-99-015, ATLAS-TDR-15, http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html (May, 1999)

  29. I. Hinchliffe et al., ATLAS-NOTE-Phys-109 (1997)

  30. B.C. Allenbach, C.G. Lester, M.A. Parker, B.R. Webber, JHEP 0009, 004 (2000)

    ADS  Google Scholar 

  31. J. Hisano, K. Kawagoe, M.M. Nojiri, Phys. Rev. D 68, 035007 (2003)

    Article  ADS  Google Scholar 

  32. G. Weiglein et al., Phys. Rep. 426, 47 (2006)

    Article  Google Scholar 

  33. B.K. Gjelsten, D.J. Miller, P. Osland, JHEP 0412, 003 (2004)

    Article  ADS  Google Scholar 

  34. B.K. Gjelsten, D.J. Miller, P. Osland, JHEP 0506, 015 (2005)

    Article  ADS  Google Scholar 

  35. B.K. Gjelsten, D.J. Miller, P. Osland, hep-ph/0511008

  36. H.P. Nilles, Phys. Rep. 110, 1 (1984) and references therein

    Article  ADS  Google Scholar 

  37. M. Drees, S.P. Martin, hep-ph/9504324

  38. B.C. Allenbach et al., in: Snowmass 2001: Proc. of APS/DPF/DPB Summer Study on the Future of Particle Physics, Snowmass, Colorado, ed. by N. Graf, July, 2001, p. 125, hep-ph/0202233

  39. B.C. Allenbach et al., Eur. Phys. J. C 25, 113 (2002)

    Article  ADS  Google Scholar 

  40. C.G. Lester, M.A. Parker, M.J. White, JHEP 0601, 080 (2006)

    Article  ADS  Google Scholar 

  41. S. Moretti, Pramana 60, 369 (2003)

    Article  ADS  Google Scholar 

  42. A. Djouadi, hep-ph/0503173

  43. M.M. Nojiri, G. Polesello, D.R. Tovey, hep-ph/0312317

  44. K. Kawagoe, M.M. Nojiri, G. Polesello, Phys. Rev. D 71, 035008 (2005)

    Article  ADS  Google Scholar 

  45. M.M. Nojiri, hep-ph/0411127

  46. H.-C. Cheng et al., 0707.0030 [hep-ph]

  47. M. Dine, A.E. Nelson, Phys. Rev. D 48, 1227 (1993)

    ADS  Google Scholar 

  48. C.F. Kolda, Nucl. Phys. Proc. Suppl. 62, 266 (1998)

    Article  ADS  Google Scholar 

  49. G.F. Giudice, M.A. Luty, H. Murayama, R. Rattazzi, JHEP 9812, 027 (1998)

    Article  ADS  Google Scholar 

  50. L. Randall, R. Sundrum, Nucl. Phys. B 557, 79 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. T. Gherghetta, G.F. Giudice, J.D. Wells, Nucl. Phys. B 559, 27 (1999)

    Article  ADS  Google Scholar 

  52. K. Choi, K.S. Jeong, K.-I. Okumura, JHEP 0509, 039 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Falkowski, O. Lebedev, Y. Mambrini, JHEP 0511, 034 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Bisset, N. Kersting, N. Liu, R. Lu, work in progress

  55. P. Fayet, Nucl. Phys. B 90, 104 (1975)

    Article  ADS  Google Scholar 

  56. S.F. King, P.L. White, Phys. Rev. D 52, 4183 (1995)

    Article  ADS  Google Scholar 

  57. T. Elliott, S.F. King, P.L. White, Phys. Lett. B 351, 213 (1995)

    Article  ADS  Google Scholar 

  58. S.Y. Choi, H.E. Haber, J. Kalinowski, P.M. Zerwas, Nucl. Phys. B 778, 85 (2007)

    Article  MATH  ADS  Google Scholar 

  59. H.-C. Cheng, I. Low, JHEP 0309, 051 (2003)

    Article  ADS  Google Scholar 

  60. H.-C. Cheng, I. Low, JHEP 0408, 061 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  61. J. Hubisz, P. Meade, Phys. Rev. D 71, 035016 (2005)

    Article  ADS  Google Scholar 

  62. H.-C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66, 056006 (2002)

    Article  ADS  Google Scholar 

  63. K. Agashe, G. Servant, Phys. Rev. Lett. 93, 231805 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bisset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, G., Bisset, M., Kersting, N. et al. Wedgebox analysis of four-lepton events from neutralino pair production at the LHC. Eur. Phys. J. C 53, 429–446 (2008). https://doi.org/10.1140/epjc/s10052-007-0472-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0472-7

Keywords

Navigation