Skip to main content
Log in

Second order nonlinear optical properties of GaAs quantum dots in terahertz region

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the second order nonlinear optical properties of GaAs quantum dot embedded in Ga1-yAlyAs matrix. The effective mass approximation with the finite confinement potential is used to obtain intraband energy levels and the wavefunctions. Within the framework of density matrix formulation, including the dipole and quadrupole effects the second harmonic generation, the sum frequency generation and the difference frequency generation nonlinear optical processes are investigated in THz region for different dot radii of GaAs quantum dot.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R.G. Gould, others, The LASER, light amplification by stimulated emission of radiation, in: The Ann Arbor Conference on Optical Pumping, the University of Michigan, 1959: p. 92.

  2. M.M. Fejer, Nonlinear optical frequency conversion. Phys. Today 47, 25–32 (1994). https://doi.org/10.1063/1.881430

    Article  ADS  Google Scholar 

  3. R.L. Byer, Historica l Review, m (1974).

  4. M.N. Islam, Ultrafast switching with nonlinear optics. Phys. Today 47, 34–40 (1994). https://doi.org/10.1063/1.881431

    Article  ADS  Google Scholar 

  5. N. Horiuchi, Frequency conversion. Nat. Photonics 6, 213–213 (2012). https://doi.org/10.1038/nphoton.2012.64

    Article  ADS  Google Scholar 

  6. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, D.C. Rogers, Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999). https://doi.org/10.1126/science.286.5444.1523

    Article  Google Scholar 

  7. E. Garmire, Nonlinear optics in daily life. Opt. Express 21, 30532 (2013). https://doi.org/10.1364/oe.21.030532

    Article  ADS  Google Scholar 

  8. R.A. de Oliveira, G.C. Borba, W.S. Martins, S. Barreiro, D. Felinto, J.W.R. Tabosa, Nonlinear optical memory for manipulation of orbital angular momentum of light. Opt. Lett. 40, 4939 (2015). https://doi.org/10.1364/ol.40.004939

    Article  ADS  Google Scholar 

  9. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  ADS  Google Scholar 

  10. M. Seto, M. Helm, Z. Moussa, P. Boucaud, F.H. Julien, J.-M. Lourtioz, J.F. Nützel, G. Abstreiter, Second-harmonic generation in asymmetric Si/SiGe quantum wells. Appl. Phys. Lett. 65, 2969–2971 (1994). https://doi.org/10.1063/1.113028

    Article  ADS  Google Scholar 

  11. S. Bergfeld, W. Daum, Second-harmonic generation in GaAs: experiment versus theoretical predictions of [formula presented]. Phys. Rev. Lett. 90, 4 (2003). https://doi.org/10.1103/PhysRevLett.90.036801

    Article  Google Scholar 

  12. P. Boucaud, F.H. Julien, D.D. Yang, J. Lourtioz, E. Rosencher, P. Bois, J. Nagle, Detailed analysis of second‐harmonic generation near 10.6 μm in GaAs/AlGaAs asymmetric quantum wells, Appl. Phys. Lett. 57 (1990) 215–217. https://doi.org/10.1063/1.103742.

  13. T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaıtre, J.-M. Gerard, Midinfrared second-harmonic generation in p-type InAs/GaAs self-assembled quantum dots. Appl. Phys. Lett. 75, 835–837 (1999)

    ADS  Google Scholar 

  14. Z.H. Levine, D.C. Allan, Optical second-harmonic generation in III-V semiconductors: detailed formulation and computational results. Phys. Rev. B 44, 12781–12793 (1991). https://doi.org/10.1103/PhysRevB.44.12781

    Article  ADS  Google Scholar 

  15. T. Brunhes, P. Boucaud, S. Sauvage, A. Lemaître, J.-M. Gérard, F. Glotin, R. Prazeres, J.-M. Ortega, Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots. Phys. Rev. B 61, 5562–5570 (2000). https://doi.org/10.1103/PhysRevB.61.5562

    Article  ADS  Google Scholar 

  16. A. Liu, S.L. Chuang, C.Z. Ning, Piezoelectric field-enhanced second-order nonlinear optical susceptibilities in wurtzite GaN/AlGaN quantum wells. Appl. Phys. Lett. 76, 333–335 (2000). https://doi.org/10.1063/1.125736

    Article  ADS  Google Scholar 

  17. X.C. Zhang, Y. Jin, K. Ware, X.F. Ma, A. Rice, D. Bliss, J. Larkin, M. Alexander, Difference-frequency generation and sum-frequency generation near the band gap of zincblende crystals. Appl. Phys. Lett. 64, 622–624 (1994). https://doi.org/10.1063/1.111069

    Article  ADS  Google Scholar 

  18. E. Garmire, Nonlinear optics in semiconductors. Phys. Today 47, 42–48 (1994). https://doi.org/10.1063/1.881432

    Article  ADS  Google Scholar 

  19. M.B. Ros, Organic materials for nonlinear optics, 2008. https://doi.org/10.1007/978-1-4020-6823-2-18

  20. S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Review on theoretical aspect of nonlinear optics. Rev. Adv. Mater. Sci. 30, 175–183 (2012)

    Google Scholar 

  21. G.L. Fischer, R.W. Boyd, R.J. Gehr, S.A. Jenekhe, J.A. Osaheni, J.E. Sipe, L.A. Weller-Brophy, Enhanced nonlinear optical response of composite materials. Phys. Rev. Lett. 74, 1871–1874 (1995). https://doi.org/10.1103/PhysRevLett.74.1871

    Article  ADS  Google Scholar 

  22. S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K. NagaKrishnakanth, S. Venugopal Rao, Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses, Optical Materials. 83 (2018) 34–42. doi:https://doi.org/10.1016/j.optmat.2018.05.083

  23. T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, Nonlinear optical activity and biomolecular chirality. J. Am. Chem. Soc. 116, 9203–9205 (1994). https://doi.org/10.1021/ja00099a040

    Article  Google Scholar 

  24. R.W. Boyd, Chapter 1 - The Nonlinear Optical Susceptibility, in: R.W.B.T.-N.O. (Third E. Boyd (Ed.), Academic Press, Burlington, 2008: pp. 1–67. https://doi.org/10.1016/B978-0-12-369470-6.00001-0.

  25. Haug H (2012) Optical nonlinearities and instabilities in semiconductors, Elsevier Science, https://books.google.co.in/books?id=k_PtZtnMgrYC.

  26. N. Suzuki, N. Iizuka, Feasibility study on ultrafast nonlinear optical properties of intersubband transition in AlGaN}/{GaN quantum wells. Jpn. J. Appl. Phys. 36, L1006–L1008 (1997). https://doi.org/10.1143/jjap.36.l1006

    Article  ADS  Google Scholar 

  27. B. Çakır, Y. Yakar, A. Özmen, Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential. J. Lumin. 132, 2659–2664 (2012). https://doi.org/10.1016/j.jlumin.2012.03.065

    Article  Google Scholar 

  28. L. He, W. Xie, Effects of an electric field on the confined hydrogen impurity states in a spherical parabolic quantum dot. Superlattices Microstruct. 47, 266–273 (2010). https://doi.org/10.1016/j.spmi.2009.10.015

    Article  ADS  Google Scholar 

  29. M. Choubani, H. Maaref, F. Saidi, Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature. J. Phys. Chem. Solids 138, 109226 (2020). https://doi.org/10.1016/j.jpcs.2019.109226

    Article  Google Scholar 

  30. T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V.M. Axt, T. Kuhn, S. Eshlaghi, A.D. Wieck, Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89, 057401 (2002). https://doi.org/10.1103/PhysRevLett.89.057401

    Article  ADS  Google Scholar 

  31. Maikhuri D, Purohit SP, Mathur KC, Maikhuri D, Purohit SP, Mathur KC (2015) Quadrupole effects in photoabsorption in ZnO quantum dots Quadrupole effects in photoabsorption in ZnO quantum dots, 104323 https://doi.org/10.1063/1.4767474.

  32. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38, 89–188 (1989). https://doi.org/10.1080/00018738900101102

    Article  ADS  Google Scholar 

  33. J.C. Martínez-Orozco, J.G. Rojas-Briseño, K.A. Rodríguez-Magdaleno, I. Rodríguez-Vargas, M.E. Mora-Ramos, R.L. Restrepo, F. Ungan, E. Kasapoglu, C.A. Duque, Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells. Physica B 525, 30–35 (2017). https://doi.org/10.1016/j.physb.2017.08.082

    Article  ADS  Google Scholar 

  34. K.J. Kuhn, G.U. Iyengar, S. Yee, K.J. Kuhn, U. Gita, S. Yee, Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1 − xAs / GaAs / AlxGa1 − xAs quantum wells Free carrier induced changes in the absorption and refractive ilndex for intersubband optical tran, 5010 (2013). doi:https://doi.org/10.1063/1.349005.

  35. S. Sakiroglu, Linear and nonlinear optical absorption coefficients and refractive index changes in Morse quantum wells under electric field, 30 (2016) 1–10. doi:https://doi.org/10.1142/S021797921650209X

  36. E.E. Mendez, G. Bastard, L.L. Chang, L. Esaki, Effect of an electric field on the luminescence of GaAs quantum wells. Phys. Rev. B 26, 7101–7104 (1982)

    ADS  Google Scholar 

  37. R. Khordad, B. Mirhosseini, Optical properties of GaAs/Ga 1-xAl xAs ridge quantum wire: third-harmonic generation. Opt. Commun. 285, 1233–1237 (2012). https://doi.org/10.1016/j.optcom.2011.11.070

    Article  ADS  Google Scholar 

  38. S. Ünlü, İ Karabulut, H. Şafak, Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E 33, 319–324 (2006). https://doi.org/10.1016/j.physe.2006.03.163

    Article  ADS  Google Scholar 

  39. R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3, 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184

    Article  ADS  Google Scholar 

  40. R. Khordad, A.R. Bijanzadeh, Optical absorption spectra related to donor impurities in GaAs/Ga 1-xAlxAs ridge quantum wire. Mod. Phys. Lett. B 23, 3677–3685 (2009). https://doi.org/10.1142/S0217984909021715

    Article  ADS  MATH  Google Scholar 

  41. C. Bose, K. Midya, M.K. Bose, Effect of conduction band non-parabolicity on the donor states in GaAs –( Al , Ga ) As spherical quantum dots, 33 (2006) 116–119. doi:https://doi.org/10.1016/j.physe.2005.11.012.

  42. J.A. Phys, Third-order nonlinear optical properties of a one- and two-electron spherical quantum dot with and without a hydrogenic impurity, 063710 (2011). doi:https://doi.org/10.1063/1.3225100.

  43. Maikhuri D, Purohit SP, Mathur KC (2015) Quadrupole second harmonic generation and sum-frequency generation in ZnO quantum dots Quadrupole second harmonic generation and sum-frequency generation in ZnO quantum dots, 047115. https://doi.org/10.1063/1.4917494.

  44. J.F. O’Hara, S. Ekin, W. Choi, I. Song, A perspective on terahertz next-generation wireless communications. Technologies. 7, 43 (2019). https://doi.org/10.3390/technologies7020043

    Article  Google Scholar 

  45. M.K. Choi, J. Yang, T. Hyeon, D. Kim, Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics. 2, 10 (2018). https://doi.org/10.1038/s41528-018-0023-3

    Article  ADS  Google Scholar 

  46. A. Franceschetti, A. Zunger, Free-standing versus AlAs-embedded GaAs quantum dots, wires, and films: The emergence of a zero-confinement state. Appl. Phys. Lett. 68, 3455–3457 (1996)

    ADS  Google Scholar 

  47. Y.N. Fernández, M.I. Vasilevskiy, E.M. Larramendi, C. Trallero-Giner, Exciton states in free-standing and embedded semiconductor nanocrystals, in: Fingerprints in the Optical and Transport Properties of Quantum Dots, IntechOpen, 2012.

  48. S. Rufo, M. Dutta, M.A. Stroscio, Acoustic modes in free and embedded quantum dots. J. Appl. Phys. 93, 2900–2905 (2003)

    ADS  Google Scholar 

  49. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, Second Edition, second, John Wiley & Sons, Ltd, 2005. doi:https://doi.org/10.1002/0470010827.

  50. S.M. Reimann, M. Manninen, Electronic structure of quantum dots, 74 (2002) 1283–1342

  51. V.N. Stavrou, Quantum Dots: Theory and Applications, BoD–Books on Demand, 2015.

  52. S. Sauvage, P. Boucaud, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaitre, J.-M. Gérard, V. Thierry-Mieg, Third-harmonic generation in InAs/GaAs self-assembled quantum dots. Phys. Rev. B 59, 9830 (1999)

    ADS  Google Scholar 

  53. U.E. Kalsoom, R. Yi, J. Qu, L. Liu, Nonlinear optical properties of CdSe and CdTe core-shell quantum dots and their applications. Front. Phys. 9, 612070 (2021)

    Google Scholar 

  54. R.A. Ganeev, Low-and High-Order Optical Nonlinearities of Quantum Dots, in: Photonics, MDPI, 2022: p. 757.

  55. V.A. Markel, T.F. George, Optics of nanostructured materials, (2001).

  56. S. Suresh, D. Arivuoli, Nanomaterials for nonlinear optical (NLO) applications: a review. Rev. Adv. Mater. Sci. 30, 243–253 (2012)

    Google Scholar 

  57. T. V. Murzina, A.I. Maydykovskiy, A. V. Gavrilenko, V.I. Gavrilenko, Optical second harmonic generation in semiconductor nanostructures, Physics Research International. 2012 (2012). https://doi.org/10.1155/2012/836430.

  58. A. Flusberg, T. Mossberg, S.R. Hartmann, Optical difference-frequency generation in atomic thallium vapor. Phys. Rev. Lett. 38, 59 (1977)

    ADS  Google Scholar 

  59. V.M. Ustinov, A.E. Zhukov, GaAs-based long-wavelength lasers. Semicond. Sci. Technol. 15, R41 (2000)

    ADS  Google Scholar 

  60. V.N. Trukhin, A.S. Buyskikh, N.A. Kaliteevskaya, A.D. Bourauleuv, L.L. Samoilov, Y.B. Samsonenko, G.E. Cirlin, M.A. Kaliteevski, A.J. Gallant, Terahertz generation by GaAs nanowires. Appl. Phys. Lett. 103, 72108 (2013)

    Google Scholar 

  61. M. Shur, GaAs devices and circuits, springer science+business media. LLC (1987). https://doi.org/10.1007/978-1-4899-1989-2

    Article  Google Scholar 

  62. H. Wang, High gain single GaAs nanowire photodetector. Appl. Phys. Lett. 103, 93101 (2013). https://doi.org/10.1063/1.4816246

    Article  Google Scholar 

  63. C.Y. Chang, F. Kai, GaAs High-speed devices: physics, technology, and circuit applications, Wiley, 1994. https://books.google.co.in/books?id=S3KyulONSSMC.

  64. J. Hung, S. Lee, C. Chia, The structural and optical properties of gallium arsenic nanoparticles. J. Nanopart. Res. 2, 415–419 (2004). https://doi.org/10.1007/s11051-004-8917-5

    Article  Google Scholar 

  65. S. Kundu, GaAs metal-oxide-semiconductor based nonvolatile memory devices embedded with ZnO quantum dots, 084509 (2015). https://doi.org/10.1063/1.4819404.

  66. P. Majhi, based GaAs metal-oxide-semiconductor field effect transistors with a thin Ge layer, 032907 (2008). https://doi.org/10.1063/1.2838294.

  67. S. Yang, K. Ding, X. Dou, X. Wu, Y. Yu, H. Ni, Z. Niu, D. Jiang, S.-S. Li, J.-W. Luo, Zinc-blende and wurtzite GaAs quantum dots in nanowires studied using hydrostatic pressure. Phys. Rev. B 92, 165315 (2015)

    ADS  Google Scholar 

  68. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In (Ga) As∕ Ga As quantum dots. Phys. Rev. B 76, 205324 (2007)

    ADS  Google Scholar 

  69. D.M. Sedrakian, A.Z. Khachatrian, G.M. Andresyan, V.D. Badalyan, The second harmonic generation in the symmetric well containing a rectangular barrier, Optical and Quantum. Electronics 36, 893–904 (2004)

    Google Scholar 

  70. S. Sarkar, A.P. Ghosh, A. Mandal, M. Ghosh, Modulating nonlinear optical properties of impurity doped quantum dots via the interplay between anisotropy and Gaussian white noise. Superlattices Microstruct. 90, 297–307 (2016)

    ADS  Google Scholar 

  71. V.V. Nautiyal, P. Silotia, Second harmonic generation in a disk shaped quantum dot in the presence of spin-orbit interaction. Phys. Lett. A 382, 2061–2068 (2018)

    ADS  MathSciNet  Google Scholar 

  72. B. Li, K.X. Guo, C.J. Zhang, Y.B. Zheng, The second-harmonic generation in parabolic quantum dots in the presence of electric and magnetic fields, Physics Letters, Section A: General, Atomic and Solid State. Physics 367, 493–497 (2007). https://doi.org/10.1016/j.physleta.2007.03.046

    Article  Google Scholar 

  73. P. Rommel, J. Main, A. Farenbruch, J. Mund, D. Fröhlich, D.R. Yakovlev, M. Bayer, C. Uihlein, Second harmonic generation of cuprous oxide in magnetic fields. Phys. Rev. B 101, 115202 (2020)

    ADS  Google Scholar 

  74. K.C. Mathur, Laser-induced gas breakdown: multipole interference in the two-photon ionization of metastable helium. Phys. Rev. A 18, 2170 (1978)

    ADS  Google Scholar 

  75. I. Milošević, V. Stevanović, P. Tronc, M. Damnjanović, Symmetry of zinc oxide nanostructures. J. Phys. Condens. Matter 18, 1939 (2006)

    ADS  Google Scholar 

  76. J. Perrière, E. Millon, M. Chamarro, M. Morcrette, C. Andreazza, Formation of GaAs nanocrystals by laser ablation. Appl. Phys. Lett. 78, 2949–2951 (2001)

    ADS  Google Scholar 

  77. F. Ungan, M.K. Bahar, The laser field controlling on the nonlinear optical specifications of the electric field-triggered Rosen-Morse quantum well. Phys. Lett. A 384, 126400 (2020)

    MathSciNet  Google Scholar 

  78. S.J.B. Yoo, M.M. Fejer, R.L. Byer, J.S. Harris Jr., Second-order susceptibility in asymmetric quantum wells and its control by proton bombardment. Appl. Phys. Lett. 58, 1724–1726 (1991)

    ADS  Google Scholar 

  79. B. Zhang, J.E. Stehr, P. Chen, X. Wang, F. Ishikawa, W.M. Chen, I.A. Buyanova, Anomalously strong second-harmonic generation in GaAs nanowires via crystal-structure engineering. Adv. Func. Mater. 31, 2104671 (2021)

    Google Scholar 

  80. A. Turker Tuzemen, H. Dakhlaoui, F. Ungan, Effects of hydrostatic pressure and temperature on the nonlinear optical properties of GaAs/GaAlAs zigzag quantum well, Philosophical Magazine. (2022) 1–16. https://doi.org/10.1080/14786435.2022.2111028.

  81. H. Hassanabadi, G. Liu, L. Lu, Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse squared quantum wells. Solid State Commun. 152, 1761–1766 (2012). https://doi.org/10.1016/j.ssc.2012.05.023

    Article  ADS  Google Scholar 

  82. G. Liu, K. Guo, Z. Zhang, H. Hassanbadi, L. Lu, Electric field effects on nonlinear optical rectification in symmetric coupled AlxGa1−xAs/GaAs quantum wells. Thin Solid Films 662, 27–32 (2018). https://doi.org/10.1016/j.tsf.2018.07.026

    Article  ADS  Google Scholar 

  83. P. Boucaud, E. Rosencher, P. Bois, F.H. Julien, D.D. Yang, J.-M. Lourtioz, Saturation of second-harmonic generation in GaAs–AlGaAs asymmetric quantum wells. Opt. Lett. 16, 199 (1991). https://doi.org/10.1364/ol.16.000199

    Article  ADS  Google Scholar 

  84. H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. Hu, X. Zhang, X. min Ren, C. Wang, Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources, Applied Physics Letters. 103 (2013) 143110.

  85. W. Xie, Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot. Physica B 404, 4142–4145 (2009). https://doi.org/10.1016/j.physb.2009.07.177

    Article  ADS  Google Scholar 

  86. W. Xie, The nonlinear optical rectification of a confined exciton in a quantum dot. J. Lumin. 131, 943–946 (2011). https://doi.org/10.1016/j.jlumin.2010.12.028

    Article  Google Scholar 

  87. A.Y. Pawar, D.D. Sonawane, K.B. Erande, D.V. Derle, Terahertz technology and its applications. Drug Invention Today. 5, 157–163 (2013). https://doi.org/10.1016/j.dit.2013.03.009

    Article  Google Scholar 

  88. E. Pickwell, V.P. Wallace, Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39, R301–R310 (2006). https://doi.org/10.1088/0022-3727/39/17/R01

    Article  ADS  Google Scholar 

  89. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007). https://doi.org/10.1038/nphoton.2007.3

    Article  ADS  Google Scholar 

  90. J. Hesler, R. Prasankumar, J. Tignon, Advances in terahertz solid-state physics and devices. J. Appl. Phys. 126, 110401 (2019). https://doi.org/10.1063/1.5122975

    Article  ADS  Google Scholar 

  91. Y.S. Lee, Principles of Terahertz Science and Technology, Springer US, Boston, MA, 2009. https://doi.org/10.1007/978-0-387-09540-0.

  92. X.G. Guo, J.C. Cao, R. Zhang, Z.Y. Tan, H.C. Liu, Recent progress in terahertz quantum-well photodetectors. IEEE J. Sel. Top. Quantum Electron. 19, 8500508 (2012)

    ADS  Google Scholar 

  93. M. Hosseini, M.J. Karimi, Tuning the terahertz absorption in cylindrical quantum wire. Optik 138, 427–432 (2017)

    ADS  Google Scholar 

  94. I.M.I. Morohashi, K.K.K. Komori, T.H.T. Hidaka, T.S.T. Sugaya, X.-L.W.X.-L. Wang, M.O.M. Ogura, T.N.T. Nakagawa, C.-S.S.C.-S. Son, Terahertz electromagnetic wave generation from quantum nanostructure, Japanese Journal of Applied Physics. 40 (2001) 3012.

  95. S. Pelling, R. Davis, L. Kulik, A. Tzalenchuk, S. Kubatkin, T. Ueda, S. Komiyama, V.N. Antonov, Point contact readout for a quantum dot terahertz sensor, Appl. Phys. Lett. 93 (2008).

  96. G. Huang, J. Yang, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, A multicolor quantum dot intersublevel detector with photoresponse in the terahertz range. Appl. Phys. Lett. 92, 011117 (2008). https://doi.org/10.1063/1.2830994

    Article  ADS  Google Scholar 

  97. X.H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, Terahertz detection with tunneling quantum dot intersublevel photodetector. Appl. Phys. Lett. 89, 31117 (2006)

    Google Scholar 

  98. A. Rice, Y. Jin, X.F. Ma, X.C. Zhang, D. Bliss, J. Larkin, M. Alexander, A. Rice, Y. Jin, X.F. Ma, X. Zhang, Terahertz optical rectification from 110 zincblende crystals Terahertz optical rectification from ( 1 IQ ) zinc-blende crystals, 1324 (2008) 1992–1995. doi:https://doi.org/10.1063/1.111922.

  99. M. Bieler, THz generation from resonant excitation of semiconductor nanostructures: Investigation of second-order nonlinear optical effects. IEEE J. Select. Top. Quantum Electron. 14, 458–469 (2008). https://doi.org/10.1109/JSTQE.2007.910559

    Article  ADS  Google Scholar 

  100. D.R. Bacon, J. Madéo, K.M. Dani, Photoconductive emitters for pulsed terahertz generation. J. Opt. 23, 64001 (2021)

    Google Scholar 

  101. R.R. Leyman, A. Gorodetsky, N. Bazieva, G. Molis, A. Krotkus, E. Clarke, E.U. Rafailov, Quantum dot materials for terahertz generation applications. Laser Photonics Rev. 10, 772–779 (2016)

    ADS  Google Scholar 

  102. N.S. Daghestani, M.A. Cataluna, G. Berry, G. Ross, M.J. Rose, Terahertz emission from InAs/GaAs quantum dot based photoconductive devices. Appl. Phys. Lett. 98, 181107 (2011)

    ADS  Google Scholar 

  103. S. Nasa, S.P. Purohit, Linear and third order nonlinear optical properties of GaAs quantum dot in terahertz region, Physica E: Low-Dimensional Systems and Nanostructures. (2019) 113913. https://doi.org/10.1016/j.physe.2019.113913.

  104. S. Nasa, S.P. Purohit, Effect of different oxide surroundings on terahertz radiation absorption in GaAs quantum dot, in: AIP Conference Proceedings, AIP Publishing LLC, 2020: p. 30181.

  105. S. Nasa, S.P. Purohit, Terahertz radiation absorption in GaAs quantum dot, AIP Conference Proceedings. 2136 (2019). doi:https://doi.org/10.1063/1.5120923.

  106. C.J. Delerue, M. Lannoo, Nanostructures: Theory and Modeling, Springer Berlin Heidelberg, 2013. https://books.google.co.in/books?id=Om_8CAAAQBAJ.

  107. J. Li, L.-W. Wang, Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B 72, 125325 (2005)

    ADS  Google Scholar 

  108. H.Z. Wu, D.J. Qiu, Y.J. Cai, X.L. Xu, N.B. Chen, Optical studies of ZnO quantum dots grown on Si (0 0 1). J. Cryst. Growth 245, 50–55 (2002)

    ADS  Google Scholar 

  109. P.F. Trwoga, A.J. Kenyon, C.W. Pitt, Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters. J. Appl. Phys. 83, 3789–3794 (1998)

    ADS  Google Scholar 

  110. S. Sanguinetti, K. Watanabe, T. Kuroda, F. Minami, Y. Gotoh, N. Koguchi, Effects of post-growth annealing on the optical properties of self-assembled GaAs/AlGaAs quantum dots. J. Cryst. Growth 242, 321–331 (2002). https://doi.org/10.1016/S0022-0248(02)01434-3

    Article  ADS  Google Scholar 

  111. A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, O.G. Schmidt, Hierarchical self-assembly of GaAs/AlGaAs quantum dots. Phys. Rev. Lett. 92, 166104 (2004)

    ADS  Google Scholar 

  112. S.-S. Li, K. Chang, J.-B. Xia, Effective-mass theory for hierarchical self-assembly of Ga As∕ Al x Ga 1–x As quantum dots. Phys. Rev. B 71, 155301 (2005)

    ADS  Google Scholar 

  113. M. Shim, P. Guyot-Sionnest, N-type colloidal semiconductor nanocrystals. Nature 407, 981–983 (2000)

    ADS  Google Scholar 

  114. D. Maikhuri, S.P. Purohit, K.C. Mathur, Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO 2 matrix, 012160 (2014). https://doi.org/10.1063/1.3693405.

  115. S.P. Anchala, K.C. Purohit, Mathur, Linear and nonlinear intersubband optical properties of Si quantum dot embedded in oxide, nitride, and carbide matrix. J. Appl. Phys. 110, 114320 (2011). https://doi.org/10.1063/1.3665687

    Article  ADS  Google Scholar 

  116. L.K. Sørensen, E. Kieri, S. Srivastav, M. Lundberg, R. Lindh, Implementation of the exact semi-classical light-matter interaction-the easy way, ArXiv Preprint ArXiv: 1809.01366. (2018).

  117. Y.J. Mii, R.P.G. Karunasiri, K.L. Wang, M. Chen, P.F. Yuh, Large Stark shifts of the local to global state intersubband transitions in step quantum wells. Appl. Phys. Lett. 56, 1986–1988 (1990)

    ADS  Google Scholar 

  118. A. Sa’ar, On the question of intersubband electric quadrupole transitions in quantum well structures, J. Appl. Phys. 74 (1993) 5263–5265.

  119. J.J. Peterson, L. Huang, C. Delerue, G. Allan, T.D. Krauss, Uncovering forbidden optical transitions in PbSe nanocrystals. Nano Lett. 7, 3827–3831 (2007)

    ADS  Google Scholar 

  120. D. Smirnova, Y.S. Kivshar, Multipolar nonlinear nanophotonics. Optica. 3, 1241–1255 (2016)

    ADS  Google Scholar 

  121. D. Ahn, S.L. Chuang, Nonlinear intersubband optical absorption in a semiconductor quantum well. J. Appl. Phys. 62, 3052–3054 (1987). https://doi.org/10.1063/1.339369

    Article  ADS  Google Scholar 

  122. R.W. Boyd, Chapter 3 - Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility, in: R.W.B.T.-N.O. (Third E. Boyd (Ed.), Academic Press, Burlington, 2008: pp. 135–206. https://doi.org/10.1016/B978-0-12-369470-6.00003-4.

  123. S.I. Azzam, A.V. Kildishev, Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater. 9, 2001469 (2021)

    Google Scholar 

  124. C.W. Hsu, B. Zhen, A.D. Stone, J.D. Joannopoulos, M. Soljačić, Bound states in the continuum. Nat. Rev. Mater. 1, 1–13 (2016)

    Google Scholar 

  125. F. Monticone, A. Alu, Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014)

    ADS  Google Scholar 

  126. K. Karrai, R.J. Warburton, C. Schulhauser, A. Högele, B. Urbaszek, E.J. McGhee, A.O. Govorov, J.M. Garcia, B.D. Gerardot, P.M. Petroff, Hybridization of electronic states in quantum dots through photon emission. Nature 427, 135–138 (2004)

    ADS  Google Scholar 

  127. S. Adachi, GaAs, AlAs, and Al x Ga 1–x As: Material parameters for use in research and device applications. J. Appl. Phys. 58, R1–R29 (1985). https://doi.org/10.1063/1.336070

    Article  ADS  Google Scholar 

  128. J. Hours, S. Varoutsis, M. Gallart, J. Bloch, I. Robert-Philip, A. Cavanna, I. Abram, F. Laruelle, J.M. Gérard, Single photon emission from individual GaAs quantum dots. Appl. Phys. Lett. 82, 2206–2208 (2003)

    ADS  Google Scholar 

  129. E.A. Zibik, T. Grange, B.A. Carpenter, N.E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, H.Y. Liu, Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009)

    ADS  Google Scholar 

  130. G. Wang, K. Guo, Excitonic effects on the third-harmonic generation in parabolic quantum dots. J. Phys. Condens. Matter 13, 8197 (2001)

    ADS  Google Scholar 

  131. L. Lu, W. Xie, H. Hassanabadi, Linear and nonlinear optical absorption coefficients and refractive index changes in a two-electron quantum dot. J. Appl. Phys. 109, 63108 (2011)

    Google Scholar 

  132. Y.-B. Yu, S.-N. Zhu, K.-X. Guo, Electron–phonon interaction effect on optical absorption in cylindrical quantum wires. Solid State Commun. 139, 76–79 (2006). https://doi.org/10.1016/j.ssc.2006.04.009

    Article  ADS  Google Scholar 

  133. C.N. Banwell, Fundamentals of Molecular & Spectroscopy, 4th, illustr ed., McGraw-Hill Education (India) Pvt Limited, 2001. https://books.google.co.in/books?id=C5G6-3ygJmsC.

  134. S. Bergfeld, W. Daum, Second-harmonic generation in GaAs: experiment versus theoretical predictions of χ x y z (2). Phys. Rev. Lett. 90, 36801 (2003)

    ADS  Google Scholar 

  135. B. Li, K.-X. Guo, C.-J. Zhang, Y.-B. Zheng, The second-harmonic generation in parabolic quantum dots in the presence of electric and magnetic fields. Phys. Lett. A 367, 493–497 (2007)

    ADS  Google Scholar 

  136. A. Fatemidokht, H.R. Askari, The effect of electric field and confinement potential on the sum frequency generation in the spherical parabolic quantum dot. Opt. Laser Technol. 45, 684–688 (2013)

    ADS  Google Scholar 

  137. L. Zhang, X. Li, X. Liu, Z. Li, The influence of second-harmonic generation under the external electric field and magnetic field of parabolic quantum dots. Physica B 618, 413197 (2021)

    Google Scholar 

  138. J. Ganguly, S. Saha, A. Bera, M. Ghosh, Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise. Superlattices Microstruct. 98, 385–399 (2016). https://doi.org/10.1016/j.spmi.2016.08.052

    Article  ADS  Google Scholar 

  139. T. Kitada, F. Tanaka, T. Takahashi, K. Morita, T. Isu, GaAs/AlAs coupled multilayer cavity structures for terahertz emission devices. Appl. Phys. Lett. 95, 111106 (2009)

    ADS  Google Scholar 

  140. K.L. Vodopyanov, M.M. Fejer, X. Yu, J.S. Harris, Y.-S. Lee, W.C. Hurlbut, V.G. Kozlov, D. Bliss, C. Lynch, Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 89, 141119 (2006)

    ADS  Google Scholar 

  141. H.R. Zangeneh, M. Asadnia Fard Jahromi, M. Asadnia Fard Jahromi, Design of a terahertz source using a nano-slot of GaAs, J. Opt. 43 (2014) 173–176.

  142. C. Lynch, D.F. Bliss, T. Zens, A. Lin, J.S. Harris, P.S. Kuo, M.M. Fejer, Growth of mm-thick orientation-patterned GaAs for IR and THz generation. J. Cryst. Growth 310, 5241–5247 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank JIIT, Noida for the facilities and support to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have contributed equally to the work.

Corresponding author

Correspondence to Sukanya Nasa.

Appendix

Appendix

1.1 The second order nonlinear susceptibility of GaAs

In the Eq. (3) by considering,

$$ d_{{_{ijk} }}^{\left( 2 \right)} = \frac{1}{2}\chi_{ijk}^{\left( 2 \right)} $$
(A1)

The nonlinear polarisation for the SFG, DFG and SHG processes can be expressed as,

$$ {\text{SFG}}:P_{i}^{(2)} \left( {\omega_{p} + \omega_{q} ;\omega_{p} ;\omega_{q} } \right) = 4\varepsilon_{0} \sum\limits_{jk} {d_{ijk}^{\left( 2 \right)} \left( {\omega_{p} + \omega_{q} ;\omega_{p} ;\omega_{q} } \right)E_{j} \left( {\omega_{p} } \right)E_{k} \left( {\omega_{q} } \right)} $$
(A2)
$$ {\text{DFG}}:P_{i}^{(2)} \left( {\omega_{p} - \omega_{q} ;\omega_{p} ;\omega_{q} } \right) = 4\varepsilon_{0} \sum\limits_{jk} {d_{ijk}^{\left( 2 \right)} \left( {\omega_{p} - \omega_{q} ;\omega_{p} ;\omega_{q} } \right)E_{j} \left( {\omega_{p} } \right)E_{k}^{*} \left( {\omega_{q} } \right)} $$
(A3)
$$\begin{aligned} {\text{SHG}}:\,P_{i}^{(2)} \left( {2\omega ;\omega ;\omega } \right)= 2\varepsilon_{0} \sum\limits_{jk}{d_{ijk}^{\left( 2 \right)} \left( {2\omega ;\omega ;\omega }\right)E_{j} \left( \omega \right)E_{k} \left( \omega \right)}\end{aligned}$$
(A4)

where, in the SHG process \({\omega }_{p}={\omega }_{q}=\omega \).

Introducing the contracted matrix \({d}_{il}\),

$$ \begin{array}{*{20}l} {jk:} \hfill & {\left( {11 = xx} \right)} \hfill & {\left( {22 = yy} \right)} \hfill & {\left( {33 = zz} \right)} \hfill & {\left( {23 = yz,{ 32} = zy} \right)} \hfill & {\left( {31 = zx, \, 13 = xz} \right)} \hfill & {\left( {12 = xy, \, 21 = yx} \right)} \hfill \\ s \hfill & 1 \hfill & 2 \hfill & 3 \hfill & 4 \hfill & 5 \hfill & 6 \hfill \\ \end{array} $$
(A5)

The \([3\times 6]\) tensor of the second order nonlinear susceptibility has 10 independent tensor terms and is expressed as [24],

$$ d_{is} = \left[ {\begin{array}{*{20}l} {d_{11} } \hfill & {d_{12} } \hfill & {d_{13} } \hfill & {d_{14} } \hfill & {d_{15} } \hfill & {d_{16} } \hfill \\ {d_{21} } \hfill & {d_{22} } \hfill & {d_{23} } \hfill & {d_{24} } \hfill & {d_{25} } \hfill & {d_{26} } \hfill \\ {d_{31} } \hfill & {d_{32} } \hfill & {d_{33} } \hfill & {d_{34} } \hfill & {d_{35} } \hfill & {d_{36} } \hfill \\ \end{array} } \right] $$
(A6)

The matrix equation for the second order nonlinear polarisation for the SFG process can be expressed as,

$$ \begin{array}{*{20}c} {\left[ {\begin{array}{*{20}l} {P_{x}^{(2)} \left( {\omega_{p} + \omega_{q} } \right)} \hfill \\ {P_{y}^{(2)} \left( {\omega_{p} + \omega_{q} } \right)} \hfill \\ {P_{z}^{(2)} \left( {\omega_{p} + \omega_{q} } \right)} \hfill \\ \end{array} } \right]} & = & {4\varepsilon_{0} \left[ {\begin{array}{*{20}l} {d_{11} } \hfill & {d_{12} } \hfill & {d_{13} } \hfill & {d_{14} } \hfill & {d_{15} } \hfill & {d_{16} } \hfill \\ {d_{21} } \hfill & {d_{22} } \hfill & {d_{23} } \hfill & {d_{24} } \hfill & {d_{25} } \hfill & {d_{26} } \hfill \\ {d_{31} } \hfill & {d_{32} } \hfill & {d_{33} } \hfill & {d_{34} } \hfill & {d_{35} } \hfill & {d_{36} } \hfill \\ \end{array} } \right] }\qquad\qquad\qquad \\ {} & {} &\times {\left[ {\begin{array}{*{20}l} {E_{x} \left( {\omega_{p} } \right)E_{x} \left( {\omega_{q} } \right)} \hfill \\ {E_{y} \left( {\omega_{p} } \right)E_{y} \left( {\omega_{q} } \right)} \hfill \\ {E_{z} \left( {\omega_{p} } \right)E_{z} \left( {\omega_{q} } \right)} \hfill \\ {E_{y} \left( {\omega_{p} } \right)E_{z} \left( {\omega_{q} } \right) + E_{y} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \hfill \\ {E_{x} \left( {\omega_{p} } \right)E_{z} \left( {\omega_{q} } \right) + E_{x} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \hfill \\ {E_{x} \left( {\omega_{p} } \right)E_{y} \left( {\omega_{q} } \right) + E_{x} \left( {\omega_{q} } \right)E_{y} \left( {\omega_{p} } \right)} \hfill \\ \end{array} } \right]} \\ \end{array} $$
(A7)

The matrix equation for the second order nonlinear polarisation for the DFG process can expressed as,

$$ \begin{array}{*{20}c} {\left[ {\begin{array}{*{20}l} {P_{x}^{(2)} \left( {\omega_{p} - \omega_{q} } \right)} \hfill \\ {P_{y}^{(2)} \left( {\omega_{p} - \omega_{q} } \right)} \hfill \\ {P_{z}^{(2)} \left( {\omega_{p} - \omega_{q} } \right)} \hfill \\ \end{array} } \right]} & = & {4\varepsilon_{0} \left[ {\begin{array}{*{20}l} {d_{11} } \hfill & {d_{12} } \hfill & {d_{13} } \hfill & {d_{14} } \hfill & {d_{15} } \hfill & {d_{16} } \hfill \\ {d_{21} } \hfill & {d_{22} } \hfill & {d_{23} } \hfill & {d_{24} } \hfill & {d_{25} } \hfill & {d_{26} } \hfill \\ {d_{31} } \hfill & {d_{32} } \hfill & {d_{33} } \hfill & {d_{34} } \hfill & {d_{35} } \hfill & {d_{36} } \hfill \\ \end{array} } \right] } \qquad\qquad\qquad\\ {} & {} &\times {\left[ {\begin{array}{*{20}l} {E_{x} \left( {\omega_{p} } \right)E_{x}^{*} \left( {\omega_{q} } \right)} \hfill \\ {E_{y} \left( {\omega_{p} } \right)E_{y}^{*} \left( {\omega_{q} } \right)} \hfill \\ {E_{z} \left( {\omega_{p} } \right)E_{z}^{*} \left( {\omega_{q} } \right)} \hfill \\ {E_{y} \left( {\omega_{p} } \right)E_{z}^{*} \left( {\omega_{q} } \right) + E_{y}^{*} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \hfill \\ {E_{x} \left( {\omega_{p} } \right)E_{z}^{*} \left( {\omega_{q} } \right) + E_{x}^{*} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \hfill \\ {E_{x} \left( {\omega_{p} } \right)E_{y}^{*} \left( {\omega_{q} } \right) + E_{x}^{*} \left( {\omega_{q} } \right)E_{y} \left( {\omega_{p} } \right)} \hfill \\ \end{array} } \right]} \\ \end{array} $$
(A8)

The matrix equation for the second order nonlinear polarisation for SHG process can be expressed as,

$$ \begin{array}{*{20}c} {\left[ {\begin{array}{*{20}l} {P_{x}^{(2)} \left( {2\omega } \right)} \hfill \\ {P_{y}^{(2)} \left( {2\omega } \right)} \hfill \\ {P_{z}^{(2)} \left( {2\omega } \right)} \hfill \\ \end{array} } \right]} & = & {2\varepsilon_{0} \left[ {\begin{array}{*{20}l} {d_{11} } \hfill & {d_{12} } \hfill & {d_{13} } \hfill & {d_{14} } \hfill & {d_{15} } \hfill & {d_{16} } \hfill \\ {d_{21} } \hfill & {d_{22} } \hfill & {d_{23} } \hfill & {d_{24} } \hfill & {d_{25} } \hfill & {d_{26} } \hfill \\ {d_{31} } \hfill & {d_{32} } \hfill & {d_{33} } \hfill & {d_{34} } \hfill & {d_{35} } \hfill & {d_{36} } \hfill \\ \end{array} } \right] } \\ {} & {} &\times {\left[ {\begin{array}{*{20}l} {E_{x} \left( \omega \right)^{2} } \hfill \\ {E_{y} \left( \omega \right)^{2} } \hfill \\ {E_{z} \left( \omega \right)^{2} } \hfill \\ {2E_{y} \left( \omega \right)E_{z} \left( \omega \right)} \hfill \\ {2E_{x} \left( \omega \right)E_{z} \left( \omega \right)} \hfill \\ {2E_{x} \left( \omega \right)E_{y} \left( \omega \right)} \hfill \\ \end{array} } \right]}\qquad\qquad \\ \end{array} $$
(A9)

GaAs has \(\overline{4 }3m\) point group symmetry and shows non-vanishing second order response. There are six non-vanishing tensor elements. These elements in Cartesian indices can be represented as,

$$ xyz \, = \, xzy \, = \, yzx \, = \, yxz \, = \, zxy \, = \, zyx $$
(A10)

Further using the Klienmann symmetry, the susceptibility tensor for GaAs is expressed as

$$ d_{is} = \left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & {d_{14} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {d_{14} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {d_{14} } \hfill \\ \end{array} } \right] $$
(A11)

Thus, the nonlinear polarisation for the SFG process is obtained as,

$$ \left[ {\begin{array}{*{20}l} {P_{x}^{(2)} \left( {\omega_{p} + \omega_{q} } \right)} \hfill \\ {P_{y}^{(2)} \left( {\omega_{p} + \omega_{q} } \right)} \hfill \\ {P_{z}^{(2)} \left( {\omega_{p} + \omega_{q} } \right)} \hfill \\ \end{array} } \right]d_{il} = 4\varepsilon_{0} \left[ {\begin{array}{*{20}l} {\chi_{14} \left\{ {E_{y} \left( {\omega_{p} } \right)E_{z} \left( {\omega_{q} } \right) + E_{y} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \right\}} \hfill \\ {\chi_{14} \left\{ {E_{x} \left( {\omega_{p} } \right)E_{z} \left( {\omega_{q} } \right) + E_{x} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \right\}} \hfill \\ {\chi_{14} \left\{ {E_{x} \left( {\omega_{p} } \right)E_{y} \left( {\omega_{q} } \right) + E_{x} \left( {\omega_{q} } \right)E_{y} \left( {\omega_{p} } \right)} \right\}} \hfill \\ \end{array} } \right] $$
(A12)

For the DFG process the nonlinear polarisation is obtained as,

$$ \left[ {\begin{array}{*{20}l} {P_{x}^{(2)} \left( {\omega_{p} - \omega_{q} } \right)} \hfill \\ {P_{y}^{(2)} \left( {\omega_{p} - \omega_{q} } \right)} \hfill \\ {P_{z}^{(2)} \left( {\omega_{p} - \omega_{q} } \right)} \hfill \\ \end{array} } \right]d_{il} = 4\varepsilon_{0} \left[ {\begin{array}{*{20}l} {\chi_{14} \left\{ {E_{y} \left( {\omega_{p} } \right)E_{z}^{*} \left( {\omega_{q} } \right) + E_{y}^{*} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \right\}} \hfill \\ {\chi_{14} \left\{ {E_{x} \left( {\omega_{p} } \right)E_{z}^{*} \left( {\omega_{q} } \right) + E_{x}^{*} \left( {\omega_{q} } \right)E_{z} \left( {\omega_{p} } \right)} \right\}} \hfill \\ {\chi_{14} \left\{ {E_{x} \left( {\omega_{p} } \right)E_{y}^{*} \left( {\omega_{q} } \right) + E_{x}^{*} \left( {\omega_{q} } \right)E_{y} \left( {\omega_{p} } \right)} \right\}} \hfill \\ \end{array} } \right] $$
(A13)

And for the SHG process nonlinear polarisation is obtained as,

$$ \left[ {\begin{array}{*{20}l} {P_{x}^{(2)} \left( {2\omega } \right)} \hfill \\ {P_{y}^{(2)} \left( {2\omega } \right)} \hfill \\ {P_{z}^{(2)} \left( {2\omega } \right)} \hfill \\ \end{array} } \right]d_{il} = 2\varepsilon_{0} \left[ {\begin{array}{*{20}l} {\chi_{14} E_{y} \left( \omega \right)E_{z} \left( \omega \right)} \hfill \\ {\chi_{14} E_{x} \left( \omega \right)E_{z} \left( \omega \right)} \hfill \\ {\chi_{14} E_{x} \left( \omega \right)E_{y} \left( \omega \right)} \hfill \\ \end{array} } \right] $$
(A14)

Using the density matrix approach the second order nonlinear susceptibility for the DFG process can be expressed as,

$$ \begin{aligned} &{\chi_{ijk}^{(2)} \left( {\omega_{p} - \omega_{q} ;\omega_{p} ;\omega_{q} } \right)} \\ & = {\sum\limits_{\ell mn} {\frac{{Ne^{3} F^{3} }}{{2\varepsilon_{0} \hbar^{2} }}\left\{ {\frac{{T_{\ell n}^{i} T_{nm}^{j} T_{m\ell }^{k} }}{{\left[ {\left( {\omega_{n\ell } - \omega_{p} + \omega_{q} } \right) - i\Gamma_{n\ell } } \right]\left[ {\left( {\omega_{m\ell } - \omega_{p} } \right) - i\Gamma_{m\ell } } \right]}}} \right.} } \\ &\quad { + \frac{{T_{\ell n}^{i} T_{nm}^{k} T_{ml}^{j} }}{{\left[ {\left( {\omega_{n\ell } - \omega_{p} + \omega_{q} } \right) - i\Gamma_{n\ell } } \right]\left[ {\left( {\omega_{m\ell } + \omega_{q} } \right) - i\Gamma_{m\ell } } \right]}}} \\ &\quad { + \frac{{T_{\ell n}^{k} T_{nm}^{i} T_{m\ell }^{j} }}{{\left[ {\left( {\omega_{mn} - \omega_{p} + \omega_{q} } \right) - i\Gamma_{mn} } \right]\left[ {\left( {\omega_{n\ell } + \omega_{p} } \right) - i\Gamma_{n\ell } } \right]}}} \\ &\quad { + \frac{{T_{\ell n}^{j} T_{nm}^{i} T_{m\ell }^{k} }}{{\left[ {\left( {\omega_{mn} - \omega_{p} + \omega_{q} } \right) - i\Gamma_{nm} } \right]\left[ {\left( {\omega_{n\ell } - \omega_{q} } \right) - i\Gamma_{n\ell } } \right]}}} \\ &\quad { + \frac{{T_{\ell n}^{j} T_{nm}^{i} T_{m\ell }^{k} }}{{\left[ {\left( {\omega_{mn} - \omega_{p} + \omega_{q} } \right) - i\Gamma_{nm} } \right]\left[ {\left( {\omega_{m\ell } - \omega_{p} } \right) - i\Gamma_{m\ell } } \right]}}} \\ &\quad { + \frac{{T_{\ell n}^{k} T_{nm}^{i} T_{m\ell }^{j} }}{{\left[ {\left( {\omega_{mn} - \omega_{p} + \omega_{q} } \right) - i\Gamma_{nm} } \right]\left[ {\left( {\omega_{m\ell } + \omega_{q} } \right) - i\Gamma_{m\ell } } \right]}}} \\ &\quad { + \frac{{T_{\ell n}^{k} T_{nm}^{j} T_{m\ell }^{i} }}{{\left[ {\left( {\omega_{m\ell } - \omega_{p} + \omega_{q} } \right) - i\Gamma_{m\ell } } \right]\left[ {\left( {\omega_{n\ell } + \omega_{p} } \right) - i\Gamma_{n\ell } } \right]}}} \\ &\quad {\left. { + \frac{{T_{\ell n}^{j} T_{nm}^{k} T_{m\ell }^{i} }}{{\left[ {\left( {\omega_{m\ell } - \omega_{p} + \omega_{q} } \right) - i\Gamma_{m\ell } } \right]\left[ {\left( {\omega_{n\ell } - \omega_{q} } \right) - i\Gamma_{n\ell } } \right]}}} \right\}} \\ \end{aligned} $$
(A15)

For the SHG process the nonlinear susceptibility can be expressed as,

$$\begin{array}{*{20}c} {\chi_{ijk}^{(2)} \left( {2\omega ;\omega ;\omega } \right)}\! & = & \!{\sum\limits_{\ell mn} \!{\frac{{Ne^{3} F^{3}}}{{2\varepsilon_{0} \hbar^{2} }}\left\{ {\frac{{T_{\ell n}^{i}T_{nm}^{j} T_{m\ell }^{k} }}{{\left[ {\left( {\omega_{n\ell } -2\omega } \right) - i\Gamma_{n\ell } } \right]\left[ {\left({\omega_{m\ell } - \omega } \right) - i\Gamma_{m\ell } } \right]}}}\right.} } \\ {} & {} & { + \frac{{T_{\ell n}^{i} T_{nm}^{k}T_{m\ell }^{j} }}{{\left[ {\left( {\omega_{n\ell } - 2\omega }\right) - i\Gamma_{n\ell } } \right]\left[ {\left( {\omega_{m\ell }- \omega } \right) - i\Gamma_{m\ell } } \right]}}} \\ {} & {} & { +\frac{{T_{\ell n}^{k} T_{nm}^{i} T_{m\ell }^{j} }}{{\left[ {\left({\omega_{mn} - 2\omega } \right) - i\Gamma_{mn} } \right]\left[{\left( {\omega_{n\ell } - \omega } \right) - i\Gamma_{n\ell } }\right]}}} \\ {} & {} & { + \frac{{T_{\ell n}^{j} T_{nm}^{i}T_{ml}^{k} }}{{\left[ {\left( {\omega_{mn} - 2\omega } \right) -i\Gamma_{nm} } \right]\left[ {\left( {\omega_{nl} - \omega } \right)- i\Gamma_{n\ell } } \right]}}} \\ {} & {} & { + \frac{{T_{\ell n}^{j} T_{nm}^{i} T_{ml}^{k} }}{{\left[ {\left( {\omega_{mn} -2\omega } \right) - i\Gamma_{nm} } \right]\left[ {\left({\omega_{ml} - \omega } \right) - i\Gamma_{m\ell } } \right]}}} \\{} & {} & { + \frac{{T_{\ell n}^{k} T_{nm}^{i} T_{m\ell }^{j}}}{{\left[ {\left( {\omega_{mn} - 2\omega } \right) - i\Gamma_{nm} }\right]\left[ {\left( {\omega_{m\ell } - \omega } \right) -i\Gamma_{m\ell } } \right]}}} \\ {} & {} & { + \frac{{T_{\ell n}^{k}T_{nm}^{j} T_{m\ell }^{i} }}{{\left[ {\left( {\omega_{m\ell } -2\omega } \right) - i\Gamma_{m\ell } } \right]\left[ {\left({\omega_{n\ell } - \omega } \right) - i\Gamma_{n\ell } } \right]}}}\\ {} & {} & {\left. { + \frac{{T_{\ell n}^{j} T_{nm}^{k} T_{m\ell }^{i} }}{{\left[ {\left( {\omega_{m\ell } - 2\omega } \right) -i\Gamma_{m\ell } } \right]\left[ {\left( {\omega_{n\ell } - \omega }\right) - i\Gamma_{n\ell } } \right]}}} \right\}} \\ \end{array}$$
(A16)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasa, S., Purohit, S.P. Second order nonlinear optical properties of GaAs quantum dots in terahertz region. Eur. Phys. J. B 96, 140 (2023). https://doi.org/10.1140/epjb/s10051-023-00602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00602-2

Navigation