Skip to main content
Log in

The wavelength dependence of drift velocities of photogenerated electrons in CdTe

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The drift velocity of photo-generated electrons in CdTe by lasers with wavelengths of 532, 355, and 266 nm is studied by the Monte Carlo method. The effects of laser wavelengths on the electron drift velocity are systematically investigated under various laser fluxes, doping densities, and temperatures. It is found that the drift velocity as a function of electric field \({v}_{\mathrm{d}}(E)\) has a close relationship with the laser wavelengths: the electron drift velocity in CdTe becomes larger when a longer photoexcitation wavelength is used. On the other hand, the doping effect, as well as the effect of the laser energy flux, on the \({v}_{\mathrm{d}}(E)\) dependence demonstrates different characteristics for different laser wavelengths. The difference in electron drift velocity caused by the various wavelengths reduces with increasing temperatures. In the case of a low laser energy flux, doping in CdTe plays a remarkable role in \({v}_{\mathrm{d}}(E)\) relations. These new results are helpful in understanding the microscopic mechanism of relaxation processes of photo-excited carriers and applications of CdTe-based optoelectronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. This manuscript has no associated data or the data will not be deposited.

References

  1. P. Gorai, D. Krasikov, S. Grover, G. Xiong, W. Metzger, V. Stevanovic, Sci. Adv. 9, 1 (2023)

    Article  Google Scholar 

  2. P. Ščajev, A. Mekys, L. Subačius, S. Stanionytė, D. Kuciauskas, K. Lynn, S. Swain, Sci. Rep. 12, 12851 (2022)

    Article  ADS  Google Scholar 

  3. A. Rogalski, Infrared Phys. Technol. 43, 187 (2002)

    Article  ADS  Google Scholar 

  4. S. Sordo, L. Abbene, E. Caroli, A. Mancini, A. Zappettini, P. Ubertini, Sensors 9, 3491 (2009)

    Article  ADS  Google Scholar 

  5. D. Chenault, R. Chipman, S. Lu, Appl. Opt. 33, 7382 (1994)

    Article  ADS  Google Scholar 

  6. G. Hu, B. Li, H. Li, H. Cao, Z. Ren, D. Zhao, W. Li, L. Wu, J. Zhang, Sol. Energy Mater. Sol. Cells 247, 111925 (2022)

    Article  Google Scholar 

  7. V. Djurberg, S. Majdi, N. Suntornwipat, J. Isberg, Material 14, 4202 (2021)

    Article  ADS  Google Scholar 

  8. H. Desai, P. Patel, J. Dhimmar, B. Modi, Solid State Commun. 313, 113910 (2020)

    Article  Google Scholar 

  9. H. Sun, H. Ma, J. Leng, Materials 13, 242 (2020)

    Article  ADS  Google Scholar 

  10. Y. Chen, T. Shu, T. Lai, H. Wu, Res. Phys. 31, 105047 (2021)

    Google Scholar 

  11. Y. Zhong, D. Ostach, M. Scholz, S.W. Epp, S. Techert, I. Schlichting, J. Ullrich, F.S. Krasniqi, J. Phys. Condens. Matter 29, 095701 (2017)

    Article  ADS  Google Scholar 

  12. X. He, N. Punpongjareorn, C. Wu, I. Davydov, D. Yang, J. Phys. Chem. C 120, 9350 (2016)

    Article  Google Scholar 

  13. J. Fink, H. Krüger, P. Lodomez, N. Wermes, Nucl. Instrum. Methods Phys Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 560, 435 (2006)

    Article  ADS  Google Scholar 

  14. H. Ma, Z. Jin, G. Ma, W. Liu, S. Tang, Appl. Phys. Lett. 94, 241112 (2009)

    Article  ADS  Google Scholar 

  15. V. Borsari, C. Jacoboni, Phys. Status Solidi B 54, 649 (1972)

    Article  ADS  Google Scholar 

  16. G. Fonthal, L. Tirado-Mejia, J. Hurtado, H. Calderon, J.G. Mendoza-Alvarezc, J. Phys. Chem. Solids 61, 579 (2000)

    Article  ADS  Google Scholar 

  17. C. Jacoboni, P. Lugli, The Monte Carlo method for semiconductor device simulation, 1st edn. (Springer, Wien, 1989)

    Book  Google Scholar 

  18. J. Prajapati, M. Bharadwaj, A. Chatterjee, R. Bhattacharjee, IEEE Trans. Microw. Theory Tech. 66, 678 (2018)

    Article  ADS  Google Scholar 

  19. J. Yang, L. Shi, L. Wang, S. Wei, Sci. Rep. 6, 21712 (2016)

    Article  ADS  Google Scholar 

  20. R. MickeviEius, A. Reklaitis, Second. Sci. Technol. 5, 805 (1990)

    ADS  Google Scholar 

  21. M. Lundstrom, Fundamentals of carrier transport, 2nd edn. (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  22. K. Boujdaria, O. Zitouni, Solid State Commun. 129, 205 (2004)

    Article  ADS  Google Scholar 

  23. M. Liyu, M. Islam, N. Hamzah, M. Karim, M. Matin, K. Sopian, N. Amin, Int. J. Photoenergy 12, 351381 (2012)

    Google Scholar 

  24. D. Yadav, F. Pauly, M. Trushin, Phys. Rev. B 103, 125113 (2021)

    Article  ADS  Google Scholar 

  25. A. Reklaitis, A. Krotkus, G. Grigaliunaite, Semicond. Sci. Technol. 14, 945 (1999)

    Article  ADS  Google Scholar 

  26. R. Cohen, V. Lyahovitskaya, E. Poles, A. Liu, Y. Rosenwaks, Appl. Phys. Lett. 73, 1400 (1998)

    Article  ADS  Google Scholar 

  27. P. Sellin, A. Davies, A. Lohstroh, M. Ozsan, J. Parkin, IEEE Trans. Nucl. Sci. 52, 3074 (2005)

    Article  ADS  Google Scholar 

  28. V. Borsari, C. Jacobont, Monte Carlo calculations on electron transport in CdTe. Phys. Stat. Sol. B 64, 649 (1972)

    Article  ADS  Google Scholar 

  29. E. Deligoz, K. Colakoglu, Y. Ciftci, Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Phys. B 373, 124–130 (2006)

    Article  ADS  Google Scholar 

  30. G. Fonthal, L. Tirado-Mejia, J. Hurtado, H. Calderon, J.G. Mendoza-Alvarezc, Temperature dependence of the band gap energy of crystalline CdTe. J. Phys. Chem. Solids 61, 579–583 (2000)

    Article  ADS  Google Scholar 

  31. V. Djurberg, S. Majdi, N. Suntornwipat, J. Isberg, Investigation of photoexcitation energy impact on electron mobility in single crystalline CdTe. Material 14, 4202 (2021)

    Article  ADS  Google Scholar 

  32. W. Sun, L. Li, H. Cai, J. Li, H. Yin, Y. Zhu, Dielectric and vibrational properties of CdTe studied by first-principles and terahertz time-domain spectroscopy. Phys. B Condens. Matter 602, 412543 (2021)

    Article  Google Scholar 

  33. D. Yadav, F. Pauly, M. Trushin, Charge-carrier thermalization in bulk and monolayer CdTe from first principles. Phys. Rev. B 103(12), 125113 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Technology Program of Guangzhou, China (Grant no. 201804010444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongFeng Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D. The wavelength dependence of drift velocities of photogenerated electrons in CdTe. Eur. Phys. J. B 96, 129 (2023). https://doi.org/10.1140/epjb/s10051-023-00595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00595-y

Navigation