Skip to main content
Log in

The space–time-fractional derivatives order effect of Caputo–Fabrizio on the doping profiles for formation a p-n junction

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study, we treated the space–time-fractional diffusion equation in a semi-infinite medium using a recently developed fractional derivative introduced by Caputo and Fabrizio. Our main focus was on simulating the diffusion profiles during the creation of a p-n junction according to the obtained solution. We made an interesting observation regarding the influence of the fractional-order derivatives on the depth estimation of the p-n junction. Increasing the order of the time-fractional derivative, denoted as \(\alpha \), resulted in faster diffusion and deeper p-n junctions. On the other hand, increasing the order of the space fractional derivative, denoted as \(\beta \), led to slower diffusion and shallower p-n junctions. These findings demonstrate the significant impact of the fractional derivative orders on the diffusion behavior and depth characteristics of the p-n junction in the studied system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The authors declare that no data supporting the findings of this study are used in the preparation of the paper. No external data are used, because the work is purely theoretical.

References

  1. I. Podlubny, Frac. Calc. Appl. Anal. 5(4), 367 (2002)

    Google Scholar 

  2. A.A. Kilbas, H.M. Srivastava, J.J. Rujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    Google Scholar 

  3. W. Shaowei, X. Mingyu, Acta Mech. 187, 103 (2006)

    Article  Google Scholar 

  4. S.K. Luo, X.T. Zhang, J.M. He, Acta Mech. 228, 157 (2017)

    Article  MathSciNet  Google Scholar 

  5. N. Laskin, Phys. Lett. A. 268, 98 (2000)

    Article  MathSciNet  Google Scholar 

  6. X. Guo, M. Xu, J. Math. Phys. 47, 082104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Dong, M. Xu, J. Math. Phys. 48(7), 072105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Herrmann, arXiv e-prints (2012). arXiv:1210.4410 [math-ph]

  9. Z. Korichi, F.E. Bouzenna, M. Meftah, Rep. Math. Phys. 85(1), 30010 (2020)

    Google Scholar 

  10. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  11. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  12. B. Riemann, Gesammelte WerkeGesammelte Math. Werke Leip 62, 331 (1896)

    Google Scholar 

  13. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  14. K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  15. M. Caputo, L. Ann, Geophys. 13(5), 529 (1967)

    Google Scholar 

  16. M. Caputo, M.A. Fabrizio, Progr. Fract. Differ. Appl. 1(1), 73 (2015)

    Google Scholar 

  17. J. Losada, J.J. Nieto, Progr. Fract. Differ. Appl. 1(2), 87 (2015)

    Google Scholar 

  18. D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu, Adv. Mech. Eng.9(2), 1 (2017)

  19. E.F.D. Goufo, Math. Model. Anal. 21(2), 188 (2016)

    Article  MathSciNet  Google Scholar 

  20. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  21. M. Abdullah, A.R. Butt, N. Raza, Mech Time-Depend Mater. 23(2), 133 (2019)

    Article  ADS  Google Scholar 

  22. K.A. Abro, M.A. Solangi, Punjab Univ. J. Math. 49(2), 113 (2017)

    MathSciNet  Google Scholar 

  23. S. Mondal, A. Sur, M. Kanoria, Acta Mech. 230(12), 4367 (2019)

    Article  MathSciNet  Google Scholar 

  24. F. Ali, M. Saqib, I. Khan, N.A. Sheikh, Eur. Phys. J. 131(10), 131 (2016)

    Google Scholar 

  25. T.M. Atanacković, M. Janev, S. Pilipović, Meccanica. 54(1), 155 (2019)

    Article  MathSciNet  Google Scholar 

  26. S. Qureshi, N.A. Rangaig, D. Baleanu, Mathematics 7(4), 374 (2019)

    Article  Google Scholar 

  27. E. Simoen, C. Claeys, TGermanium Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2007)

    Google Scholar 

  28. P.S. Ryan, A.-C. Hwang, A.B. Tobias, H. Erik, Am. J. Phys. 86(10), 740 (2018)

    Article  Google Scholar 

  29. J. Klafler, I. Sokolov, Phys. World 18(8), 29 (2005)

    Article  Google Scholar 

  30. E. Nadal, E. Abisset-Chavanne, E. Cueto, F. Chinesta, C. R. Mécaniq. 346, 581 (2018)

    Article  Google Scholar 

  31. M. Pan, L. Zheng, F. Liu, C. Liu, X. Chen, Appl. Math. Model. 53, 622 (2018)

    Article  MathSciNet  Google Scholar 

  32. B. Vermeersch, J. Carrete, N. Mingo, A. Shakouri, Phys. Rev. B. 91, 085202 (2015)

    Article  ADS  Google Scholar 

  33. D.Y. Tzou, J. Heat Transf. 117(1), 8 (1995)

    Article  Google Scholar 

  34. L. Sendra, A. Beardo, P. Torres, J. Bafaluy, F. Xavier Alvarez, J. Camacho, Phys. Rev. B. 103, L140301 (2021)

    Article  ADS  Google Scholar 

  35. R. Metzler, J. Klafter, Phys. Rep. 339(1), 1 (2000)

    Article  ADS  Google Scholar 

  36. N.D. Thai, Solid State Electron. Lett. 13(2), 165 (1970)

    Article  ADS  Google Scholar 

  37. S. Okano, H. Yamakawa, M. Suzuki, A. Hiraki, Jpn. J. Appl. Phys. 26(7R), 1102 (1987)

    Article  ADS  Google Scholar 

  38. W. Chen, H. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59(5), 1754 (2010)

    MathSciNet  Google Scholar 

  39. G. Rohith, K. K. Ajayan, Solid State International Symposium on Electronic System Design, p. 231 (2012)

  40. J. Crank, The Mathematics of Diffusion (Oxford University Press, Oxford, 1975)

    MATH  Google Scholar 

  41. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials Diffusion-controlled Processes (Springer, Berlin, 2007)

    Book  Google Scholar 

  42. A. Cheng, P. Sidauruk, Math. J. 4(2), 76 (1994)

  43. M. Wojcik, M. Szukiewicz, P. Kowalik, J. Appl. Comput. Sci. Methods. 7(1), 5 (2015)

    Article  Google Scholar 

  44. Z. Krougly, M. Davison, S. Aiyar, J. Appl. Comput. Sci. Methods 8(4), 562 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed equally to the paper.

Corresponding author

Correspondence to Zineb Korichi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souigat, A., Korichi, Z., Slimani, D. et al. The space–time-fractional derivatives order effect of Caputo–Fabrizio on the doping profiles for formation a p-n junction. Eur. Phys. J. B 96, 124 (2023). https://doi.org/10.1140/epjb/s10051-023-00591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00591-2

Navigation