Skip to main content
Log in

The Monte Carlo simulation of the hole transport in thin films of PFO:MEH-PPV

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Hole transport is numerically studied by means of the Monte Carlo method in a single blended layer of poly(9,9\(^\prime \)-dihexyl fluorenyl-2,7-diyl) (PFO) and poly(2-methoxy-5-(2-ethylhexyloxy)-l,4-phenylenevinylene) (MEH-PPV), which is sandwiched between two electrodes. A bimodal Gaussian density of states is used for randomly distributed localized states in the blended organic layer and an exponential distribution function for trap density of states. In this study, a new approximation has been used for the Fermi level instead of the Boltzmann approximation due to the high charge carrier density. The current density and the mobility have been calculated for different concentrations of MEH-PPV versus voltage and 1000/T at temperatures 150–290 K. The results of calculations show that the current density and the mobility are maximized at the blending ratio of 2 wt%, and there is a linear relationship between the current density and 1000/T at different voltages. The comparison of the numerical results with the experimental data shows a very good consistency between them, particularly at low and medium voltages of the working range of organic semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tessler, N., Preezant, Y., Rappaport, N., Roichman, Y.: Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009). doi:10.1002/adma.200803541

    Article  Google Scholar 

  2. Lim, S.C., Kim, S.H., Lee, J.H., Yu, H., Park, Y., Kim, D., Zyung, T.: Organic thin-film transistors on plastic substrates. Mater. Sci. Eng. B 121, 211–215 (2005)

    Article  Google Scholar 

  3. Coehoorn, R., Pasveer, W.F., Bobbert, P.A., Michels, M.A.J.: Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B 72, 155206 (2005). doi:10.1103/PhysRevB.72.155206

    Article  Google Scholar 

  4. Coehoorn, R., Bobbert, P.A.: Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors. Phys. Status. Solidi 209, 2354–2377 (2012). doi:10.1002/pssa.201228387

    Article  Google Scholar 

  5. Bouhassoune, M., van Mensfoort, S.L.M., Bobbert, P.A., Coehoorn, R.: Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Org. Electron 10, 437–445 (2009). doi:10.1016/j.orgel.2009.01.005

    Article  Google Scholar 

  6. Logothetidis, S.: Flexible organic electronic devices: materials, process and applications. Mater. Sci. Eng. B 152, 96–104 (2008). doi:10.1016/j.mseb.2008.06.009

    Article  Google Scholar 

  7. Brütting, W., Adachi, C.: Physics of Organic Semiconductors. Wiley, Weinheim (2012)

    Book  Google Scholar 

  8. van der Holst, J.J.M., van Oost, F.W.A., Coehoorn, R., Bobbert, P.A.: Monte Carlo study of charge transport in organic sandwich-type single-carrier devices: effects of Coulomb interactions. Phys. Rev. B 83, 85206 (2011). doi:10.1103/PhysRevB.83.085206

    Article  Google Scholar 

  9. Deibel, C., Dyakonov, V.: Polymer–Fullerene bulk heterojunction solar cell. Rep. Prog. Phys. 21, 1323–1338 (2010). doi:10.1088/0034-4885/73/9/096401

    Google Scholar 

  10. van Mensfoort, S.L.M., Vulto, S.I.E., Janssen, R.A.J., Coehoorn, R.: Hole transport in polyfluorene-based sandwich-type devices: quantitative analysis of the role of energetic disorder. Phys. Rev. B 78, 085208 (2008). doi:10.1103/PhysRevB.78.085208

    Article  Google Scholar 

  11. Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Brédas, J.L., Lögdlung, M., Salaneck, W.R.: Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999). doi:10.1038/16393

    Article  Google Scholar 

  12. Tanase, C., Blom, P.W.M., de Leeuw, D.M., Meijer, E.J.: harge carrier density dependence of the hole mobility in poly (p-phenylene vinylene). Phys. Sol. Stat. A 201, 1236–1245 (2004). doi:10.1002/pssa.200404340

    Article  Google Scholar 

  13. Fallahpour, A.H., Gagliardi, A., Gentilini, D., Zampetti, A., Santoni, F., Auf der Maur, M., Di Carl, A.: Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells. J. Comput. Electron 13, 933–942 (2014). doi:10.1007/s10825-014-0611-y

    Article  Google Scholar 

  14. Lia, M.H., Chen, H.L., Huang, Y.F., Chuang, W.T., Chen, Y.R., Tsai, H.S., Semenikhin, O.A., White, J.D.: Increased order and improved hole mobility in MEH-PPV thin films by removing shortest chains. Chem. Phys. Lett. 505, 100–105 (2011). doi:10.1016/j.cplett.2011.02.026

    Article  Google Scholar 

  15. Grage, M.M.L., Wood, P.W., Ruseckas, A., Pullerits, T., Mitchell, W., Burn, P.L., Samuel, I.D.W., Sundstrom, V.: Conformational disorder and energy migration in MEH-PPV with partially broken conjugation. J. Chem. Phys. 118, 7644–7650 (2003). doi:10.1063/1.1562190

    Article  Google Scholar 

  16. Zhang, Y., de Boer, B., Blom, P.W.M.: Trap-free electron transport in poly (p-phenylene vinylene) by deactivation of traps with n-type doping. Phys. Rev. B 81, 085201 (2010). doi:10.1103/PhysRevB.81.085201

    Article  Google Scholar 

  17. Yang, C.K., Yang, C.M., Liao, H.H., Horng, S.F., Meng, H.F.: Current injection and transport in polyfluorene. Appl. Phys. Lett. 91, 093504 (2007). doi:10.1063/1.2759951

    Article  Google Scholar 

  18. Opitz, A., Wagner, J., Brütting, W., Hinderhofer, A., Schreiber, F.: Molecular semiconductor blends: microstructure, charge carrier transport, and application in photovoltaic cells. Phys. Sol. Stat. A 206, 2683–2694 (2009). doi:10.1002/pssa.200925238

    Article  Google Scholar 

  19. Cottaar, J., Coehoorn, R., Bobbert, P.A.: Field-induced detrapping in disordered organic semiconducting host–guest systems. Phys. Rev. B 82, 205203 (2010). doi:10.1103/PhysRevB.82.205203

    Article  Google Scholar 

  20. Hallermann, M., Haneder, S., Da Como, E.: Charge-transfer states in conjugated polymer/fullerene blends: below-gap weakly bound excitons for polymer photovoltaics. Appl. Phys. Lett. 93, 053307 (2008). doi:10.1063/1.2969295

    Article  Google Scholar 

  21. Pearson, C., Cadd, D.H., Petty, M.C., Hua, Y.L.: Effect of dye concentrations in blended-layer white organic light-emitting devices based on phosphorescent dyes. J. Appl. Phys. 106, 064516 (2009). doi:10.1063/1.3226780

    Article  Google Scholar 

  22. Bhattacharyya, S., Sen, T., Patra, A.: Host–guest energy transfer: semiconducting polymer nanoparticles and Au nanoparticles. J. Phys. Chem. C 114, 11787–11795 (2010). doi:10.1021/jp1030398

    Article  Google Scholar 

  23. Ananthakrishnan, N., Padmanaban, G., Ramakrishnan, S., Reynolds, J.R.: Tuning polymer light-emitting device emission colors in ternary blends composed of conjugated and nonconjugated polymers. Macromolecules 38, 7660–7669 (2005). doi:10.1021/ma050787j

    Article  Google Scholar 

  24. Bajpaia, M., Srivastava, R., Kamalasanana, M.N., Tiwari, R.S., Chand, S.: Charge transport and microstructure in PFO:MEH-PPV polymer blend thin films. Synth. Met. 160, 1740–1744 (2010). doi:10.1016/j.synthmet.2010.06.010

    Article  Google Scholar 

  25. Yimer, Y.Y., Bobbert, P.A., Coehoorn, R.: Charge transport in disordered organic host–guest systems: effects of carrier density and electric field. J. Phys. 20, 335204 (2008). doi:10.1088/0953-8984/20/33/335204

    Google Scholar 

  26. Zhou, J., Zhou, Y.C., Zhao, J.M., Wu, C.Q., Ding, X.M., Hou, X.Y.: Carrier density dependence of mobility in organic solids: a Monte Carlo simulation. Phys. Rev. B 75, 153201 (2007). doi:10.1103/PhysRevB.75.153201

    Article  Google Scholar 

  27. Casalegno, M., Bernardi, A., Raos, M.: Numerical simulation of photocurrent generation in bilayer organic solar cells: comparison of master equation and kinetic Monte Carlo approaches. J. Chem. Phys. 139, 024706 (2013). doi:10.1063/1.4812826

    Article  Google Scholar 

  28. Baranovskii, S.D.: Theoretical description of charge transport in disordered organic semiconductors. Phys. Status Solidi B 251, 487–525 (2014). doi:10.1002/pssb.201350339

    Article  Google Scholar 

  29. Miller, A., Abrahams, E.: Impurity conduction at low concentrations. Phys. Rev. 120, 745 (1960). doi:10.1103/PhysRev.120.745

    Article  MATH  Google Scholar 

  30. Nenashev, A.V., Jansson, F., Baranovskii, S.D., Österbacka, R., Dvurechenskii, A.V., Gebhard, F.: Effect of electric field on diffusion in disordered materials I. One-dimensional hopping transport. Phys. Rev. B 81, 115203 (2010). doi:10.1103/PhysRevB.81.115203

    Article  Google Scholar 

  31. Knapp, E., Häusermann, R., Schwarzenbach, U., Ruhstaller, B.: Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108, 054504 (2010). doi:10.1063/1.3475505

    Article  Google Scholar 

  32. van der Holst, J.J.M.: Three- dimensional modeling of charge transport, injection and recombination in organic light-emitting. PhD Thesis, Eindhoven University, Eindhoven (2010)

  33. Gautschi, W.: On the computation of generalized Fermi–Dirac and Bose–Einstein integrals. Comput. Phys. Commun. 74, 233–238 (1993). doi:10.1016/0010-4655(93)90093-R

  34. Li, H., Duan, L., Zhang, D., Qui, Y.: Electric field inside a hole-only device and insights into space charge-limited current measurement for organic semiconductors. J. Phys. Chem. C 118, 9990–9995 (2014). doi:10.1021/jp5035618

    Article  Google Scholar 

  35. Li, H., Duan, L., Dong, G., Qiao, J., Wang, L., Zhang, D., Qiu, Y.: Relationship between mobilities from time-of-flight and dark injection space-charge-limited current measurements for organic semiconductors: a Monte Carlo study. J. Phys. Chem. C 118, 6052–6058 (2014). doi:10.1021/jp411948d

    Article  Google Scholar 

  36. Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., de Leeuw, D.M., Michels, M.A.J.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601 (2005). doi:10.1103/PhysRevLett.94.206601

  37. Watkins, P.K., Walker, A.B., Verschoor, G.L.B.: Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Lett. 5, 1814–1818 (2005). doi:10.1021/nl051098o

    Article  Google Scholar 

  38. Coehoorn, R., van Mensfoort, S.L.M.: Effects of disorder on the current density and recombination profile in organic light-emitting diodes. Phys. Rev. B 80, 085302 (2009). doi:10.1103/PhysRevB.80.085302

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shahid Beheshti University for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezeddin Mohajerani.

Appendix: An approximation for the Fermi level

Appendix: An approximation for the Fermi level

To derive Eq. (16), first consider the following relation between the Fermi level and the charge carrier density [38].

$$\begin{aligned} \frac{\hbox {d}E_{\mathrm{F}} }{\hbox {d}n}=k_{\mathrm{B}} T\left[ {\frac{1}{n}+\frac{1}{\hbox {g}\left( n \right) }\frac{\hbox {dg}\left( n \right) }{\hbox {d}n}} \right] , \end{aligned}$$
(21)

where \(\hbox {g}\left( n \right) \) is the mobility enhancement function.

Moreover, Pasveer et al. [36] used the following expression for \(\hbox {g}\left( n \right) \) which had been obtained by them from the fitted numerical data for their purpose:

$$\begin{aligned} \hbox {g}\left( n \right)= & {} \exp \left( {\frac{1}{2}\left( \hat{ \sigma }^{{2}}-\hat{\sigma } \right) \left( {2\frac{n}{N_0 }} \right) ^{\delta }} \right) , \end{aligned}$$
(22)
$$\begin{aligned} \delta= & {} 2\frac{\ln \left( {\hat{\sigma }^{{2}}-\hat{\sigma }} \right) -\hbox {ln}\left( {\ln \left( 4 \right) } \right) }{\hat{\sigma }^{{2}}}, \end{aligned}$$
(23)

here \(\hat{\sigma } =\frac{\sigma }{k_{\mathrm{B}} T}\) .

By substituting Eqs. (22) into (21), we will have:

$$\begin{aligned} \frac{\mathrm {d}E_{\mathrm {F}}}{\mathrm {d}n}= & {} k_{\mathrm {B}}T\left[ \frac{1}{n}+\frac{1}{\exp \left( \frac{1}{2}\left( \hat{\sigma }^{2}-\hat{\sigma } \right) \left( 2\frac{n}{N_{0}} \right) ^{\delta } \right) }\right. \nonumber \\&\left. \times \, \frac{\delta }{2}\left( \hat{\sigma }^{2}-\hat{\sigma } \right) \left( \frac{2}{N_{0}} \right) ^{\delta }\times \left( n \right) ^{\delta -1}\right. \nonumber \\&\left. \times \,\exp \left( \frac{1}{2}\left( \hat{\sigma }^{2}-\hat{\sigma } \right) \left( 2\frac{n}{N_{0}} \right) ^{\delta } \right) \right] \nonumber \\= & {} k_{\mathrm {B}}T\left[ \frac{1}{n}+\frac{\delta }{2}\left( \hat{\sigma }^{2}-\hat{\sigma } \right) \left( \frac{2}{N_{0}} \right) ^{\delta }\times \left( n \right) ^{\delta -1} \right] \end{aligned}$$
(24)

If we compute the integral of Eq. \(\left( {\hbox {A}.\hbox {}4} \right) \), we will get:

$$\begin{aligned} E_{\mathrm{F}} =k_{\mathrm{B}} T\left[ {\hbox {ln}\left( {\frac{n}{N_0 }} \right) +{\left( n \right) ^{\delta }}/2\left( {\hat{\sigma }^{2}-\hat{\sigma } } \right) \left( {\frac{n}{N_0 }} \right) ^{\delta -1}} \right] +E_0\nonumber \\ \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, M., Mohajerani, E. The Monte Carlo simulation of the hole transport in thin films of PFO:MEH-PPV. J Comput Electron 15, 672–682 (2016). https://doi.org/10.1007/s10825-016-0800-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0800-y

Keywords

Navigation