Skip to main content
Log in

Entanglement spectrum statistics of a time reversal invariant spin chain system: insights from random matrix theory

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The entanglement spectrum statistics (ESS) of a disordered and generalised time reversal invariant XXZ model is inspected in the bipartite framework using exact finite-N results from the fixed trace Wishart–Laguerre (FTWL) ensemble of random matrices. Despite significant interest in entanglement spectrum of various spin models, exact finite-N RMT results had hitherto remained unutilized in the study of ESS of short and moderate sized spin chains. In this particular model, disorder has been introduced via the addition of a random z-field (transverse field), defect field at a particular site, or both. Next-nearest neighbour interactions are also put in place, to witness the effect of competing interactions on the ESS. One noteworthy feature of this model is that even in presence of the z-field, the results adhere to the orthogonal ensemble (OE) of random matrices, as a consequence of the inherent non-conventional time reversal symmetry associated with a \(\pi /2\) rotation about the x-axis. Additionally we examine the eigenvector statistics using the distribution of eigenvector components which as expected, follow that of the trace normalised real Ginibre matrices. The empirical results show significantly good agreement with exact RMT results of the \(\beta = 1\) FTWL ensemble when the system parameters are properly adjusted. In particular for fine tuning of system parameters, the smallest and largest Schmidt eigenvalue distributions, which are sensitive measures among the ESS, are in good agreement to analytical results. In some previous work its has been shown that for Hamiltonian systems, the entanglement spectrum exhibits level statistics matching RMT predictions and are governed by the same random matrix ensemble as the energy spectrum. This the authors have concluded to be an evidence in favour of a strong version of the eigenvalue thermalization hypothesis. We opine through the results of this work, that for short and moderate sized spin chains which have been bi-partitioned and therefore possesses even smaller subsystems, the information provided by just the level spacings or their ratios is insufficient to conclude whether the system is in a thermalizing or many-body localized phase. In this scenario one needs to examine other statistical measures of the Schmidt eigenvalues using exact finite-N RMT results or those from corresponding random matrix model simulations which are better suited to detect quantum chaotic behaviour for the composite as well as reduced density matrices of these systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D.A. Rabson, B.N. Narozhny, A.J. Millis, Phys. Rev. B 69, 054403 (2004)

    ADS  Google Scholar 

  2. Y. Avishai, J. Richert, R. Berkovits, Phys. Rev. B 66, 052416 (2002)

    ADS  Google Scholar 

  3. K. Kudo, T. Deguchi, Phys. Rev. B 69, 132404 (2004)

    ADS  Google Scholar 

  4. J. Karthik, A. Sharma, A. Lakshminarayan, Phys. Rev. A 75(2), 022304 (2007)

    ADS  Google Scholar 

  5. M. Serbyn, J.E. Moore, Phys. Rev. B 93, 041424(R) (2016)

    ADS  Google Scholar 

  6. R. Modak, S. Mukerjee, S. Ramaswamy, Phys. Rev. B 90, 075152 (2014)

    ADS  Google Scholar 

  7. Z.-X. Chen, Z.-W. Zhou, X. Zhou, X.-F. Zhou, G.-C. Guo, Phys. Rev. A 81, 022303 (2010)

    ADS  Google Scholar 

  8. P. Braun, D. Waltner, M. Akila, B. Gutkin, T. Guhr, Phys. Rev. E 101, 052201 (2020)

    ADS  MathSciNet  Google Scholar 

  9. C. Pineda, T. Prosen, Phys. Rev. E 76, 061127 (2007)

    ADS  Google Scholar 

  10. E. Cuevas, M. Feigel’man, L. Ioffe, M. Mezard, Nat. Commun. 3, 1128 (2012)

    ADS  Google Scholar 

  11. W.G. Brown, L.F. Santos, D.J. Starling, L. Viola, Phys. Rev. E 77, 021106 (2008)

    ADS  MathSciNet  Google Scholar 

  12. A. Gubin, L.F. Santos, Am. J. Phys. 80, 246 (2012)

    ADS  Google Scholar 

  13. K. Joel, D. Kollmar, L.F. Santos, Am. J. Phys. 81, 450 (2013) (references therein)

  14. J.B. Parkinson, D.J.J. Farnell, An Introduction to Quantum Spin Systems, Lect. Notes Phys., vol. 816 (Springer, Berlin Heidelberg, 2010)

    MATH  Google Scholar 

  15. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover Books on Physics, Courier Corporation, North Chelmsford, 2013)

    MATH  Google Scholar 

  16. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  17. B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 6366 (2000)

    ADS  Google Scholar 

  18. B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000)

    ADS  Google Scholar 

  19. A. Harrow, P. Hayden, D. Leung, Phys. Rev. Lett. 92, 187901 (2004)

    ADS  Google Scholar 

  20. C.H. Bennett, P. Hayden, D. Leung, P. Shor, A. Winter, IEEE Trans. Inf. Theory 51, 56 (2005)

    Google Scholar 

  21. M.P. Estarellas, Doctoral Thesis, Spin Chain Systems for Quantum Computing and Quantum Information Applications

  22. N. Mirkin, D. Wisniacki, Phys. Rev. E. 103, L020201 (2021)

    ADS  Google Scholar 

  23. E.M. Fortes, I. García-Mata, R.A. Jalabert, D.A. Wisniacki, Euro. Phys. Lett. 130, 60001 (2020)

    ADS  Google Scholar 

  24. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

    ADS  Google Scholar 

  25. J.Z. Imbrie, Phys. Rev. Lett. 117, 027201 (2016)

    ADS  Google Scholar 

  26. D.A. Huse, R. Nandkishore, V. Oganesyan, Phys. Rev. B 90, 174202 (2014)

    ADS  Google Scholar 

  27. R. Nandkishore, D.A. Huse, Ann. Rev. Condens. Matter. Phys. 6, 15 (2015)

    ADS  Google Scholar 

  28. A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010)

    ADS  Google Scholar 

  29. C.R. Laumann, Y.N. Yao, A. Vishwanath, arXiv:1508.06995 (2015)

  30. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    ADS  Google Scholar 

  31. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010)

    ADS  Google Scholar 

  32. A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)

    ADS  MathSciNet  Google Scholar 

  33. X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003)

    ADS  Google Scholar 

  34. J.H. Bardarson, F. Pollmann, J.E. Moore, Phys. Rev. Lett. 109, 017202 (2012)

    ADS  Google Scholar 

  35. J.A. Kjäll, J.H. Bardarson, F. Pollmann, Phys. Rev. Lett. 113, 107204 (2014)

    ADS  Google Scholar 

  36. S. Bera, A. Lakshminarayan, Phys. Rev. B 93, 134204 (2016)

    ADS  Google Scholar 

  37. Z.-C. Yang, C. Chamon, A. Hamma, E.R. Mucciolo, Phys. Rev. Lett. 115, 267206 (2015)

    ADS  Google Scholar 

  38. S.D. Geraedts, R. Nandkishore, N. Regnault, Phys. Rev. B 93, 174202 (2016)

    ADS  Google Scholar 

  39. N. Regnault, R. Nandkishore, Phys. Rev. B 93, 052416 (2016)

    Google Scholar 

  40. M. Serbyn, A.A. Michailidis, D.A. Abanin, Z. Papić, Phys. Rev. Lett. 117, 160601 (2016)

    ADS  Google Scholar 

  41. F. Pietracaprina, G. Parisi, A. Mariano, S. Pascazio, A. Scardicchio, J. Stat. Mech. 2017, 113102 (2017)

  42. A. Sen, U. Sen, J. Dziarmaga, A. Sanpera, M. Lewenstein, Phys. Rev. Lett. 101, 187202 (2008)

    ADS  Google Scholar 

  43. T. Nosaka, T. Numasawa, J. High Energ. Phys. 2020, 81 (2020)

    Google Scholar 

  44. I. Piz̃orn, T. Prosen, S. Mossmann, T. H. Seligman, New J. Phys. 10, 023020 (2008)

  45. D.J. Luitz, N. Laflorencie, F. Alet, Phys. Rev. B 91, 081103(R) (2015)

    ADS  Google Scholar 

  46. M. Z̃nidaric̃, T. Prosen, P. Prelovs̃ek, Phys. Rev. B 77, 064426 (2008)

  47. Z.-C. Yang et al., Phys. Rev. B 96, 020408(R) (2017)

    ADS  Google Scholar 

  48. J. Gray, S. Bose, A. Bayat, Phys. Rev. B 97, 201105(R) (2018)

    ADS  Google Scholar 

  49. H. Li, F.D.M. Haldane, Phys. Rev. Lett. 101, 010504 (2008)

    ADS  Google Scholar 

  50. B.I. Shklovskii et al., Phys. Rev. B 47, 11487 (1993)

    ADS  Google Scholar 

  51. J. Hutchinson, J.P. Keating, F. Mezzadri, Phys. Rev. E 92, 032106 (2015)

    ADS  Google Scholar 

  52. R. Modak, S. Mukherjee, New J. Phys. 16, 093016 (2014)

    ADS  Google Scholar 

  53. C.L. Bertrand, A.M. García-García, Phys. Rev. B 94, 144201 (2016)

    ADS  Google Scholar 

  54. M. Pouranvari, K. Yang, Phys. Rev. B 88, 075123 (2013)

    ADS  Google Scholar 

  55. Y. Huang, Nucl. Phys. B 966, 115373 (2021)

    MathSciNet  Google Scholar 

  56. M. Haque, P.A. McClarty, I.M. Khaymovich, Phys. Rev. E 105, 014109 (2022)

    ADS  Google Scholar 

  57. Y. Huang, arXiv:2202.01173 (2022)

  58. A. Samanta, K. Damle, R. Sensarma, Phys. Rev. B 102, 104201 (2020)

    ADS  Google Scholar 

  59. W. Buijsman, V. Gritsev, V. Cheianov, Phys. Rev. B 100, 205110 (2019)

    ADS  Google Scholar 

  60. R. Pal, A. Lakshminarayan, arXiv:2002.00682 (2020)

  61. R. Thomale, D.P. Arovas, B. Andrei Bernevig, Phys. Rev. Lett. 105, 116805 (2010)

    ADS  Google Scholar 

  62. G. De Chiara, L. Lepori, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 109, 237208 (2012)

    ADS  Google Scholar 

  63. A.M. Läuchli, J. Schliemann, Phys. Rev. B 85, 054403 (2012)

    ADS  Google Scholar 

  64. G Torlai et. al. J. stat. Mech. P06001 (2014), https://doi.org/10.1088/1742-5468/2014/06/P06001

  65. R. Lundgren et al., Phys. Rev. B 94, 081112(R) (2016)

  66. J.P. Keating, N. Linden, H.J. Wells, Markov process. Relat. Fields. 21, 3 (2015)

    Google Scholar 

  67. J.P. Keating, N. Linden, H.J. Wells, Commun. Math. Phys. 338, 81–102 (2015)

    ADS  Google Scholar 

  68. H.J. Wells, Ph.D. Thesis, School of Mathematics (University of Bristol, 2004). (references therein)

  69. P. Vivo, J. Phys. A Math. Theor. 43, 405206 (2010)

    MathSciNet  Google Scholar 

  70. S. Kumar, A. Pandey, J. Phys. A Math. Theor. 44, 445301 (2011)

    ADS  Google Scholar 

  71. J.P. Keating, N. Linden, H.J. Wells, Markov Process. Relat. Fields. 21, 3 (2015)

    Google Scholar 

  72. V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

  73. Y.Y. Atas, E. Bogomolny, O. Giraud, G. Roux, Phys. Rev. Lett. 110, 084101 (2013)

    ADS  Google Scholar 

  74. Y.Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, E. Vivo, J. Phys. A Math. Theor. 46, 355204 (2013)

    Google Scholar 

  75. A. Sarkar, M. Kothiyal, S. Kumar, Phys. Rev. E 101, 012216 (2020)

  76. M. Kus, J. Mostowski, F. Haake, J. Phys. A Math. Gen. 21, L1073 (1988)

    ADS  Google Scholar 

  77. T.A. Brody et al., Rev. Mod. Phys. 53, 385 (1981)

    ADS  Google Scholar 

  78. F. Haake, K. Życzkowski, Phys. Rev. A 42, 1013(R) (1990)

    ADS  Google Scholar 

  79. A. Sarkar, S. Kumar, Phys. Rev. A. 103, 032423 (2021)

    ADS  Google Scholar 

  80. L. DiCarlo et al., Nature 460, 240 (2009)

    ADS  Google Scholar 

  81. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Google Scholar 

  82. C. Gross, I. Bloch, Science 357, 995 (2017)

    ADS  Google Scholar 

  83. J. Yoneda et al., Nat. Nanotechnol. 13, 102 (2018)

    ADS  Google Scholar 

  84. C. Neill et al., Science 360, 195 (2018)

    ADS  MathSciNet  Google Scholar 

  85. K.A. Landsman et al., Nature 567, 61 (2019)

    ADS  Google Scholar 

  86. N.T. Zinner, Exploring the few-to many-body crossover using cold atoms in one dimension. in EPJ Web of Conferences, vol. 113 (Les Ulis, France, EDP Sciences, 2016), p. 01002

  87. F. Serwane et al., Science 332, 336 (2011)

    ADS  Google Scholar 

  88. S. Murmann et al., Phys. Rev. Lett. 115, 215301 (2015)

  89. S. Murmann et al., Phys. Rev. Lett. 114, 080402 (2015)

    ADS  Google Scholar 

  90. B.T. Walker et al., Nat. Phys. 14, 1173 (2018)

    Google Scholar 

  91. H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100, 240501 (2008)

    ADS  MathSciNet  Google Scholar 

  92. P. Vivo, S.N. Majumdar, O. Bohigas, J. Phys. A 40, 4317 (2007)

    ADS  MathSciNet  Google Scholar 

  93. S.S. Wilks, Mathematical Statistics (Wiley, New York, 1962)

  94. K. Fukunaga, Introduction to Statistical Pattern Recognition (Elsevier, New York, 1990)

    MATH  Google Scholar 

  95. S.N. Majumdar, Extreme eigenvalues of Wishart matrices: application to entangled bipartite system. in Handbook of Random Matrix Theory’ (Book Chapter)

  96. S. Kumar, J. Stat. Phys. 175(1), 126 (2019)

    ADS  MathSciNet  Google Scholar 

  97. S. Kumar, B. Sambasivam, S. Anand, J. Phys. A Math. Theor. 50, 345201 (2017)

    Google Scholar 

  98. P.J. Forrester, S. Kumar, J. Phys. A Math. Theor. 52, 42LT02 (2019)

    Google Scholar 

Download references

Acknowledgements

AS acknowledges the research fellowship from DST-INSPIRE (IF170612), Govt of India. SK acknowledges the support provided by SERB, DST, Govt. of India (Grant no. CRG/2022/001751).

Author information

Authors and Affiliations

Authors

Contributions

SK formulated the research idea, provided guidance along the way and contributed to the final writing and editing of the manuscript. AS contributed to producing the results, analysis of the data and preparation of plots along with writing and editing of the manuscript.

Corresponding author

Correspondence to Ayana Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kumar, S. Entanglement spectrum statistics of a time reversal invariant spin chain system: insights from random matrix theory. Eur. Phys. J. B 96, 120 (2023). https://doi.org/10.1140/epjb/s10051-023-00583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00583-2

Navigation