Skip to main content
Log in

Universal Pareto laws in agent-based exchange models: debt and varying initial-money distributions

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We examine by Monte-Carlo simulations the behavior of a kinetic exchange-trading model for various initial distributions of money in the system of agents. Our goal is to analyze the characteristics of the Pareto laws for the long-time money distribution, in both closed and open systems. We consider three different initial distributions for these two situations. We first briefly summarize the concepts and results of some agent-based money-exchange models. Then, via employing the Monte-Carlo computer simulations, for both types of systems we obtain the long-time money distributions for the initially homogeneous or constant, for positive random, and finally, for both positive and negative random distributions of money among the agents. We conclude that the Pareto laws and their exponents remained nearly the same in all these situations showing little sensitivity to the initial conditions imposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility statement

No data is associated with the current manuscript.

Notes

  1. Inequality is likely to be growing in recent decades due to, i.a., formation of huge corporate conglomerates, overall globalization of economies, rosy tax-evading schemes for ”big global players”, as well as due to other tricks invented by capitalistic magnates via, e.g., their political involvements and lobbying of appropriately ”designed” laws. A 80/20 Pareto-type principle of wealth splitting and the steepness of the firm-size distribution [27, 28] is likely to be even more drastic in modern times. Known as the Matthew effect from biblical times, a pronounced inequality per se is a rather negative factor for a long-term economic development and sustainable growth [29, 30]: it can namely destabilize the ”foundation” of the wealth-distribution pyramid and eradicate the middle-class, the core of many established capitalistic systems.

  2. In a real economic system, the total amount of money is not preserved: a country can lose some of its wealth as a consequence of e.g. inflation, unexpected debt [to cover the costs of war, for example], a big natural catastrophe [drought, etc.], etc. Such a model could, thus, explain an effective decline of the wealth per capita.

References

  1. V. Pareto, Cours d’economie politique (Rouge, Lausanne, 1897)

    Google Scholar 

  2. C. Gini, Econ. J. 31, 124 (1921)

    Article  Google Scholar 

  3. I.I. Eliazar, I.M. Sokolov, Phys. A 391, 1323 (2012)

    Article  Google Scholar 

  4. I. Eliazar, Phys. Reports 649, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. B. Mandelbrot, Int. Econ. Rev. 1, 79 (1960)

    Article  Google Scholar 

  6. J.-P. Bouchaud, M. Mézard, Phys. A 282, 536 (2000)

    Article  Google Scholar 

  7. J. Persky, J. Econ. Perspect. 6, 181 (1992)

    Article  Google Scholar 

  8. T. Kato, PLoS ONE 17, e0275113 (2022)

    Article  Google Scholar 

  9. R. Gibrat, Les Inegalites Economiques (Recueil Sirey, Paris, 1931)

    MATH  Google Scholar 

  10. A. Dragulescu, V.M. Yakovenko, Phys. A 299, 213 (2001)

    Article  Google Scholar 

  11. Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji, M. Aoki, Phys. A 321, 598 (2003)

    Article  MathSciNet  Google Scholar 

  12. A. Drăgulescu, V.M. Yakovenko, Eur. Phys. J. B 20, 585 (2001)

    Article  ADS  Google Scholar 

  13. X. Gabaix, Annu. Rev. Econ. 1, 255 (2009)

    Article  Google Scholar 

  14. A. Banerjee, V.M. Yakovenko, New J. Phys. 12, 075032 (2010)

    Article  ADS  Google Scholar 

  15. B.K. Chakrabarti, A. Chakraborti, S.R. Chakravarty, A. Chatterjee, Econophysics of Income and Wealth Distributions (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  16. T. Piketty, E. Saez, Science 344, 838 (2014)

    Article  ADS  Google Scholar 

  17. L. Einav, J. Levin, Science 346, 1243089 (2014)

    Article  Google Scholar 

  18. I. Eliazar, M.H. Cohen, Phys. A 401, 148 (2014)

    Article  MathSciNet  Google Scholar 

  19. X. Gabaix, J.-M. Lasry, P.-L. Lions, B. Moll, Econometrica 84, 2071 (2016)

    Article  MathSciNet  Google Scholar 

  20. A. Ghosh, A. Chatterjee, J. Ichi Inoue, B.K. Chakrabarti, Phys. A 451, 465 (2016)

    Article  Google Scholar 

  21. X. Gabaix, J.-M. Lasry, P.-L. Lions, B. Moll, Econometrica 84, 2071 (2016)

    Article  MathSciNet  Google Scholar 

  22. C. Starmans, M. Sheskin, P. Bloom, Nat. Hum. Behav. 1, 0082 (2017)

    Article  Google Scholar 

  23. N.S. Diffenbaugh, M. Burke, Proc. Natl. Acad. Sci. 116, 9808 (2019)

    Article  ADS  Google Scholar 

  24. V. Stojkoski, P. Jolakoski, A. Pal, T. Sandev, L. Kocarev, R. Metzler, Philos. Trans. R. Soc. A 380, 20210157 (2022)

    Article  ADS  Google Scholar 

  25. J.T. Kemp, L.M.A. Bettencourt, Phys. A 607, 128180 (2022)

    Article  Google Scholar 

  26. S. Paul, S. Mukherjee, B. Joseph, A. Ghosh, B.K. Chakrabarti, Philos. Trans. R. Soc. A 380, 20210163 (2022)

    Article  ADS  Google Scholar 

  27. H.A. Simon, C.P. Bonini, Am. Econ. Rev. 48, 607 (1958)

    Google Scholar 

  28. R.E. Lucas, Bell J. Econ. 9, 508 (1978)

    Article  Google Scholar 

  29. J.E. Stiglitz, Am. Econ. Rev. 65, 283 (1975)

    Google Scholar 

  30. J.E. Stiglitz, The price of inequality: How today’s divided society endangers our future (WW Norton & Company, New York, 2012)

  31. A.A. Dragulescu, V.M. Yakovenko, AIP Conf. Proc. 661, 180 (2003)

    Article  ADS  Google Scholar 

  32. S. Cordier, L. Pareschi, G. Toscani, J. Stat. Phys. 120, 253 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  33. P.K. Mohanty, Phys. Rev. E 74, 011117 (2006)

    Article  ADS  Google Scholar 

  34. A. Chatterjee, B.K. Chakrabarti, Eur. Phys. J. B 60, 135 (2007)

    Article  ADS  Google Scholar 

  35. B. Düring, D. Matthes, G. Toscani, Phys. Rev. E 78, 056103 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.S. Chakrabarti, B.K. Chakrabarti, Phys. A 388, 4151 (2009)

    Article  Google Scholar 

  37. V.M. Yakovenko, J.B. Rosser, Rev. Mod. Phys. 81, 1703 (2009)

    Article  ADS  Google Scholar 

  38. A. Chatterjee, Eur. Phys. J. B 67, 593 (2009)

    Article  ADS  Google Scholar 

  39. M. Patriarca, A. Chakraborti, Am. J. Phys. 81, 618 (2013)

    Article  ADS  Google Scholar 

  40. G. Toscani, C. Brugna, S. Demichelis, J. Stat. Phys. 151, 549 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Sornette, Rep. Prog. Phys. 77, 062001 (2014)

    Article  ADS  Google Scholar 

  42. L. Pareschi, G. Toscani, Philos. Trans. R. Soc. A 372, 20130396 (2014)

    Article  ADS  Google Scholar 

  43. G. Lim, S. Min, Entropy 22, 386 (2020)

    Article  ADS  Google Scholar 

  44. E. Aydiner, A.G. Cherstvy, R. Metzler, Phys. A 490, 278 (2018)

    Article  MathSciNet  Google Scholar 

  45. E. Aydiner, A.G. Cherstvy, R. Metzler, Eur. Phys. J. B 92, 104 (2019)

    Article  ADS  Google Scholar 

  46. A. Chakraborti, I.M. Toke, M. Patriarca, F. Abergel, Quant. Finance 11, 1013 (2011)

    Article  MathSciNet  Google Scholar 

  47. A. Dragulescu, V. Yakovenko, Eur. Phys. J. B 17, 723 (2000)

    Article  ADS  Google Scholar 

  48. S. Viaggiu, A. Lionetto, L. Bargigli, M. Longo, Phys. A 391, 4839 (2012)

  49. V.M. Yakovenko, Eur. Phys. J. Spec. Top. 225, 3313 (2016)

    Article  Google Scholar 

  50. G. Chacon-Acosta, V. Angeles-Sanchez, Entropy 23, 196 (2021)

    Article  ADS  Google Scholar 

  51. J. Li, B.M. Boghosian, C. Li, Phys. A 516, 423 (2019)

    Article  MathSciNet  Google Scholar 

  52. D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  53. I. Giardina, J.-P. Bouchaud, Eur. Phys. J. B 31, 421 (2003)

    Article  ADS  Google Scholar 

  54. S. Ritschel, A.G. Cherstvy, R. Metzler, J. Phys. Complex. 4, 045003 (2021)

    Article  Google Scholar 

  55. D. Vinod, A.G. Cherstvy, W. Wang, R. Metzler, I.M. Sokolov, Phys. Rev. E 105, L012106 (2022)

    Article  ADS  Google Scholar 

  56. D. Vinod, A.G. Cherstvy, R. Metzler, I.M. Sokolov, Phys. Rev. E 106, 034137 (2022)

    Article  ADS  Google Scholar 

  57. V. Stojkoski, T. Sandev, L. Kocarev, A. Pal, Phys. Rev. E 104, 014121 (2021)

    Article  ADS  Google Scholar 

  58. P. Jolakoski et al., Chaos. Solitons & Fractals 175, 113921 (2023)

    Article  MathSciNet  Google Scholar 

  59. E. Bennati (ETS Editrice: Pisa, 1988)

  60. E. Bennati, Riv. Int. Sci. Econ. Commerc. 35, 735 (1988)

    Google Scholar 

  61. E. Bennati, Proc. Rassegna di Lavori dell’ISCO X 10, 31 (1993)

    Google Scholar 

  62. A.C. Silva, V.M. Yakovenko, Europhys. Lett. 69, 304 (2004)

    Article  ADS  Google Scholar 

  63. A. Chakraborti, B. Chakrabarti, Eur. Phys. J. B 17, 167 (2000)

    Article  ADS  Google Scholar 

  64. A. Chakraborti, Int. J. Mod. Phys. C 13, 1315 (2002)

    Article  ADS  Google Scholar 

  65. A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Phys. Scripta 2003, 36 (2003)

    Article  Google Scholar 

  66. M. Patriarca, A. Chakraborti, K. Kaski, Phys. Rev. E 70, 016104 (2004)

    Article  ADS  Google Scholar 

  67. A. Chatterjee, B.K. Chakrabarti, S. Manna, Phys. A 335, 155 (2004)

    Article  MathSciNet  Google Scholar 

  68. A. Chatterjee, B.K. Chakrabarti, Phys. A 382, 36 (2007)

    Article  Google Scholar 

  69. A.S.R. Manstead, Br. J. Soc. Psychol. 57, 267 (2018)

    Article  Google Scholar 

  70. D. Ludwig, V.M. Yakovenko, Philos. Trans. R. Soc. A 380, 20210162 (2022)

    Article  ADS  Google Scholar 

  71. M. Patriarca, A. Chakraborti, K. Kaski, Phys. A 340, 334 (2004)

    Article  MathSciNet  Google Scholar 

  72. A. Banerjee, V.M. Yakovenko, T. Di Matteo, Phys. A 370, 54 (2006)

    Article  MathSciNet  Google Scholar 

  73. R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014)

    Article  Google Scholar 

  74. B.K. Chakrabarti, A. Chatterjee, The Application of Econophysics (Springer, Berlin, 2004), pp.280–285

    Book  Google Scholar 

Download references

Acknowledgements

We thank two careful referees for their insightful comments which enabled us to improve the manuscript. E. A. is grateful to Humboldt Universität zu Berlin for support and to Potsdam Universität for hospitality. This work was partially supported by DAAD (Project 57588362). R. M. acknowledges financial support by the German Science Foundation (DFG Grant ME 1535/12-1).

Author information

Authors and Affiliations

Authors

Contributions

EA performed Monte-Carlo Simulations and analyzed the data; EA, AGC, RM and IMS discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Ekrem Aydiner.

Appendix A: Auxiliary figures

Appendix A: Auxiliary figures

Here, we present some supplementary plots supporting the claims of the main text (see Figs. 5, 6, 7, 8, 9, 10, 11).

Fig. 5
figure 5

Money distribution f(x) for the simulated 1D traps-free exchange model. Inset: a log–log plot of the same f(x) yielding the Pareto exponent \(-(1+\alpha ) = -2.0\)

Fig. 6
figure 6

Money distributions f(x) for randomly distributed and homogeneous initial amounts of positive money (green squares/rhombuses and red circles, correspondingly). The inset shows the initial money amounts for each site of the lattice. In our simulations, each agent positioned at each site of the 1D lattice acquires a certain random amount of money at the start of the simulation procedure. Each simulation run these numbers are chosen anew so that a statistical ensemble for later averaging of the results is being created

Fig. 7
figure 7

Money distribution \(f_{\pm }(x)\) for randomly distributed initial amounts of positive and negative money (see the legend for notations), used as the starting conditions in simulations. Parameters: \(L=L_0\), \(R=R_0\), and \(t=t_0\)

Fig. 8
figure 8

Long-time money distribution for a closed system with debt shown for different lengths of simulations, see the legend. Other parameters are the same as in Fig. 2

Fig. 9
figure 9

Money distributions \(f_{+}(x)\) for random initial conditions, shown for two densities of the trapping sites \(\rho \) (see the legend). As a reference, the results for a homogeneous money distribution from Fig. 6 are also shown

Fig. 10
figure 10

The same quantities as in Fig. 8 but for an open system with positive and negative money and in the presence of traps, computed for different trajectory lengths (see the legend for the values of parameters)

Fig. 11
figure 11

Evolution of money in a system with variable density of traps and with both positive- and negative-money agents. Other parameters are the same as in Fig. 4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydiner, E., Cherstvy, A.G., Metzler, R. et al. Universal Pareto laws in agent-based exchange models: debt and varying initial-money distributions. Eur. Phys. J. B 96, 123 (2023). https://doi.org/10.1140/epjb/s10051-023-00579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00579-y

Navigation