Skip to main content
Log in

Electronic and magnetic behaviors of Cr and Mn (co)-doped zinc-blende SiC compound

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study, we have investigated the electronic and magnetic characteristics of doped and co-doped 3D SiC material using the main Korringa–Kohn–Rostoker (KKR) Green’s function technique combined with coherent potential approximation (CPA). Two impurities are considered, namely, chromium (Cr) and manganese (Mn), are considered. Density of state (DOS) calculations show that pure SiC is an N-type semiconductor with a 1.3eV band-gap energy, while substituting Si with Cr/Mn leads to a metallic behavior. Electronic structure calculations also reveal no magnetic order in the pure compounds, consistent with experiments. By comparing the energies of the ferromagnetic and spin-glass states, we have showed that impurities also induce ferromagnetism compounds. Furthermore, for each concentration, the polarization is determined from the density of carriers at the Fermi level. Finally, the Curie temperature (\( T_{C} \)) is calculated by the mean-field approach at concentrations near the percolation threshold. In both cases of Cr/Mn dopants, the value of \(T_{C}\) is found to be greater than ambient temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statements

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data in this article, all results have been shared in the publication.]

References

  1. T. Dietl, Nat. Mater. 9, 965–974 (2010)

    Article  ADS  Google Scholar 

  2. K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, R. Zeller, First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82(2), 1633 (2010). https://doi.org/10.1103/RevModPhys.82.1633

  3. S. Kumar, Y.J. Kim, B.H. Koo, C.G. Lee, Structural and magnetic properties of Ni doped CeO2 nanoparticles. J. Nanosci. Nanotechnol. 10(11), 7204–7207 (2010). https://doi.org/10.1166/jnn.2010.2751

    Article  Google Scholar 

  4. I. Akasaki, Nobel Lecture: Fascinated journeys into blue light. Rev. Mod. Phys. 87(4), 1119 (2015). https://doi.org/10.1103/RevModPhys.87.1119

  5. H. Amano, Nobel Lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation. Rev. Mod. Phys. 87, 1133 (2015). https://doi.org/10.1103/RevModPhys.87.1133

    Article  ADS  Google Scholar 

  6. S. Berri, The electronic structure and spin polarization of Co2Mn0. 75 (Gd, Eu) 0.25 Z (Z= Si, Ge, Ga, Al) quaternary Heusler alloys. J. Magn. Magn. Mater. 401, 667–672 (2016). https://doi.org/10.1016/j.jmmm.2015.10.101

    Article  ADS  Google Scholar 

  7. M. Ren, X. Feng, P. Li, X. Liu, Z. Zhang, A first-principles study of ferromagnetism in Pd-doped ZnO. Solid State Commun. 151(11), 864–866 (2011). https://doi.org/10.1016/j.ssc.2011.03.008

    Article  ADS  Google Scholar 

  8. S. Wang, J. Yu, Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. J. Supercond. Nov. Magn. 31(9), 2789–2795 (2018). https://doi.org/10.1007/s10948-017-4532-4

    Article  Google Scholar 

  9. T. Jungwirth, J. Sinova, J. Masek, Theory of ferromagnetic (III, Mn) V semiconductors. Rev. Mod. Phys. 78(3), 809 (2006). https://doi.org/10.1103/RevModPhys.78.809

    Article  ADS  Google Scholar 

  10. A. Bonanni, Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths. Semicond Sci Technol. 22(9), R41 (2007). https://doi.org/10.1088/0268-1242/22/9/R01

    Article  ADS  Google Scholar 

  11. M. Sun, Q. Ren, S. Wang, Y. Zhang, Y. Du, J. Yu, W. Tang, Magnetism in transitionmetal- doped germanene: a first-principles study. Comput. Mater. Sci. 118, 112–116 (2016). https://doi.org/10.1016/j.commatsci.2016.03.006

    Article  Google Scholar 

  12. M. Sun, Q. Ren, Y. Zhao, S. Wang, J. Yu, W. Tang, Magnetism in transition metal-substituted germanane: A search for room temperature spintronic devices. J. Appl. Phys. 119(14), 143904 (2016). https://doi.org/10.1063/1.4945771

    Article  ADS  Google Scholar 

  13. M. Rostami, M. Moradi, Z. Javdani, H. Salehi, The electronic, magnetic and optical properties of Cr-doped MC (M= Si, Ge and Sn): a density functional theory approach. Mater. Sci. Semicond. Process. 38, 218–227 (2015). https://doi.org/10.1016/j.mssp.2015.04.034

    Article  Google Scholar 

  14. M. Luo, H.H. Yin, Y.H. Shen, Magnetic Properties in Nonmagnetic Metal Atom Adsorption on SiC Monolayer: First-Principles Study. J. Supercond. Nov. Magn. 31(4), 1235–1240 (2018). https://doi.org/10.1007/s10948-017-4310-3

    Article  Google Scholar 

  15. H. Matsunami, Fundamental research on semiconductor SiC and its applications to power electronics. Proc. Jpn. Acad. B: Phys. Biol. Sci. 96(7), 235–254 (2020). https://doi.org/10.2183/pjab.96.018

    Article  ADS  Google Scholar 

  16. J. Wang, L. Zhang, Q. Zeng, G.L. Vignoles, A. Guette, Theoretical investigation for the active-to-passive transition in the oxidation of silicon carbide. J. Am. Ceram. 91(5), 1665–1673 (2008). https://doi.org/10.1111/j.1551-2916.2008.02353.x

    Article  Google Scholar 

  17. D. Chaussende, P.J. Wellmann, M. Pons, Status of SiC bulk growth processes. J. Phys. D J PHYS D APPL PHYS 40(20), 6150 (2007). https://doi.org/10.1088/0022-3727/40/20/S02

  18. C.M. DiMarino, R. Burgos, B. Dushan, High-temperature silicon carbide: characterization of state-of-the-art silicon carbide power transistors. IEEE Industrial Electronics Magazine 9(3), 19–30 (2015). https://doi.org/10.1109/MIE.2014.2360350

    Article  Google Scholar 

  19. K. Watari, High thermal conductivity non-oxide ceramics. J. Ceram. Soc. JAPAN. 109(1265), S7–S16 (2001). https://doi.org/10.2109/jcersj.109.S7

    Article  Google Scholar 

  20. L. Malakkal, B. Szpunar, R.K. Siripurapu, J.A. Szpunar, Thermal conductivity of bulk and nanowire of cubic-SiC from ab initio calculations. Comput. Mater. Sci. 128, 249–256 (2017). https://doi.org/10.1016/j.commatsci.2016.11.040

    Article  Google Scholar 

  21. E. Bekaroglu, M. Topsakal, S. Cahangirov, S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B. 81(7), 075433 (2010). https://doi.org/10.1103/PhysRevB.81.075433

    Article  ADS  Google Scholar 

  22. P. Lou, J.Y. Lee, Electrical control of magnetization in narrow zigzag silicon carbon nanoribbons. J. Phys. Chem. C. 113(50), 21213–21217 (2009). https://doi.org/10.1021/jp906558y

    Article  Google Scholar 

  23. M.B. Javan, Electronic and magnetic properties of monolayer SiC sheet doped with 3dtransition metals. J. Magn. Magn. Mater. 401, 656–661 (2016). https://doi.org/10.1016/j.jmmm.2015.10.103

    Article  ADS  Google Scholar 

  24. L. Lin, J. Huang, L. Zhu, H. Tao, P. Wang, J. Zhang, Z. Zhang, Electronic structures and magnetic properties of (Al, Cr) co-doped 4H-SiC: a first-principles study. Mater. Res. Express. 6(9), 096316 (2019). https://doi.org/10.1088/2053-1591/ab1a87

    Article  ADS  Google Scholar 

  25. W. Wang, F. Takano, H. Ofuchi, H. Akinaga, Local structural, magnetic and magneto-optical properties of Mn-doped SiC films preparedon a 3C-SiC(001) wafer. New J. Phys. 10(5), 055006 (2008). https://doi.org/10.1088/1367-2630/10/5/055006

    Article  ADS  Google Scholar 

  26. L. Tan, T.R. Allen, P. Demkowicz, High temperature interfacial reactions of TiC, ZrC, TiN, and ZrN with palladium. Solid State Ion. 181(25–26), 1156–1163 (2010). https://doi.org/10.1016/j.ssi.2010.06.054

    Article  Google Scholar 

  27. K.K. Korir, G.O. Amolo, N.W. Makau, D.P. Joubert, First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures. Diam. Relat. Mater. 20(2), 157–164 (2011). https://doi.org/10.1016/j.diamond.2010.11.021

    Article  ADS  Google Scholar 

  28. Z. Bounouala, F. Goumrhar, L.B. Drissi, R. Ahl Laamara, Half-metallic behavior inzirconium carbide (ZrC) doped with Cr and Mn. Comput. Condens. Matter. 27, e00553 (2021). https://doi.org/10.1016/j.cocom.2021.e00553

    Article  Google Scholar 

  29. K.K. Eric Abavare, N.A. Samuel Dodoo, K. Uchida, K.G. Nkurumah-Buandoh, A. Yaya, A. Oshiyama, Indirect phase transition of TiC, ZrC, and HfC crystal structures. Phys. Status Solidi B 253(6), 1177–1185 (2016). https://doi.org/10.1002/pssb.201552793

    Article  ADS  Google Scholar 

  30. N. Mediane, F. Goumrhar, L.B. Drissi, K. Htoutou, R. Ahl Laamara, Enhanced Electronic and Magnetic Properties of Cr- and Mn-Doped GeC Zinc Blende. J. Supercond. Nov. Magn. 33, 2513–2520 (2020). https://doi.org/10.1007/s10948-019-05397-x

    Article  Google Scholar 

  31. T. El-Achari, F. Goumrhar, L.B. Drissi, R. Ahl Laamara, Half-metallicity in V doped tin-carbide SnC. Comput. Condens. Matter. 25, e00504 (2020). https://doi.org/10.1016/j.cocom.2020.e00504

    Article  Google Scholar 

  32. G. Chikvaidze, N. Mironova-Ulmane, A. Plaude, O. Sergeev, Investigation of Silicon Carbide Polytypes by Raman Spectroscopy. Latv. J. Phys. Tech. Sci. 51(3), 51–57 (2014). https://doi.org/10.2478/lpts-2014-0019

    Article  Google Scholar 

  33. A. Ghosh, C. Varadachari, derivations of a direct band gap semiconductor of SiC doped with Ge. J. Electron. Mater 44(1), 167–176 (2015). https://doi.org/10.1007/s11664-014-3424-7

    Article  ADS  Google Scholar 

  34. H. Akai, MACHIKANEYAMA2002v08, Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1?1, Toyonaka 560?0043, Japan, http://www.akai.phys.sci.osaka-u.ac.jp

  35. M. Woloszyn, A.Z. Maksymowicz, Coherent potential approximation technique in a simple example of resistivity calculations for binary alloys. Q. Rev 6(4), 669–680 (2002)

    Google Scholar 

  36. V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated electronic properties of metals. Elsevier sci. (2013)

  37. G.L. Zhao, D. Bagayoko, Electronic structure and charge transfer in 3C-and 4H-SiC. New J. Phys. 2(1), 16 (2000). https://doi.org/10.1088/1367-2630/2/1/316

    Article  ADS  Google Scholar 

  38. F.C. Pan, Z.P. Chen, X.L. Lin, F. Zheng, X.M. Wang, H.M. Chen, Electronic structure and magnetic properties of (Cu, N)-codoped 3C-SiC studied by first-principles calculations. Chin. Phys. B. 25(9), 096108 (2016). https://doi.org/10.1088/1674-1056/25/9/096108

    Article  ADS  Google Scholar 

  39. \( Wycko_RWG \), Crystal Structures (Wiley, New York, 1964)

  40. C.T. Lee, L.H. Tsai, Y.H. Lin, G.R. Lin, A chemical vapor deposited silicon rich silicon carbide PN junction based thin-film photovoltaic solar cell. ECS J. Solid State Sci. Technol. 1(6), Q144 (2012). https://doi.org/10.1149/2.005301jss

    Article  ADS  Google Scholar 

  41. Z. Huang, T.Y. Lu, H.Q. Wang, J.C. Zheng, Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO. AIP Adv. 5(9), 097204 (2015). https://doi.org/10.1063/1.4931820

    Article  ADS  Google Scholar 

  42. T. El-Achari, F. Goumrhar, L.B. Drissi, R. Ahl Laamara, Structural, electronic and magnetic properties of Mn doped CeO2: An ab-initio study. Phys. Rev. B Condens. Matter 601, 412443 (2021). https://doi.org/10.1016/j.physb.2020.412443

  43. T. El-Achari, F. Goumrhar, L.B. Drissi, R. Ahl Laamara, Electronic and magnetic properties of (Ti, V, Cr, Mn, and Co)-doped CdS. J. Supercond. Nov. Magn. 34(7), 1923 (2021). https://doi.org/10.1007/s10948-021-05839-5

    Article  Google Scholar 

  44. P. Bondavalli, Graphene and Spintronics, the Good Match In Graphene and Related Nanomaterials (Elsevier, Amsterdam, 2018), pp.137–156

    Book  Google Scholar 

  45. H. Akai, P.H. Dederichs, Local moment disorder in ferromagnetic alloys. Phys. Rev. B 47(14), 8739 (1993). https://doi.org/10.1103/PhysRevB.47.8739

    Article  ADS  Google Scholar 

  46. S. Khmelevskyi, T. Khmelevska, A.V. Ruban, P. Mohn, Magnetic exchange interactions in the paramagnetic state of hcp Gd. J. Phys. Condens. Matter 19(32), 326218 (2007). https://doi.org/10.1088/0953-8984/19/32/326218

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the “Académie Hassan II des Sciences et Techniques”-Morocco for its financial support. The authors would also like to hank the LPHE-MS, Faculty of Sciences, Mohammed V University in Rabat, Morocco for the technical support through computer facilities, where all the calculations have been performed.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to F. Goumrhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elarari, I., Mediane, N., Goumrhar, F. et al. Electronic and magnetic behaviors of Cr and Mn (co)-doped zinc-blende SiC compound. Eur. Phys. J. B 96, 97 (2023). https://doi.org/10.1140/epjb/s10051-023-00562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00562-7

Navigation