Skip to main content
Log in

Electronic and Magnetic Properties of (Ti, V, Cr, Mn, and Co)-Doped CdS

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, an ab initio study of the electronic and magnetic properties of CdS doped by the transition metal elements has been investigated. Based on the KKR-CPA method within the Generalized Gradient Approximation (GGA), we have calculated the total energy to determine the most stable state in the system and found it to be the ferromagnetic state for Ti, V and Cr-doped CdS, while it is the stabilization in spin glass states for Mn and Co cases. On the other hand, we have investigated and plotted the density of states (DOSs) which reveals that the doped compounds exhibit a half-metallic character. The spin polarization at Fermi level is estimated and found to be around 100%. Furthermore, we have identified the type of mechanism of exchange interactions being double exchange for all components except Mn case where we find that the responsible mechanism is the p-d exchange. The evaluation of the Curie temperature variation TC for the three components stable in the ferromagnetic phase revealed values greater than 300 K for most cases. The effect of the crystal field and the exchange splitting as a function of the concentrations values has been also investigated. Half-metallic substances are very interesting for spin-dependent electronics devices as they boost their magnetoresistance capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mynbaev, K. D., Shilyaev, A. V., Semakova, A. A., Bykhanova, E. V., Bazhenov, N. L.: Luminescence of II-VI and III-V nanostructures. Opto-Electron Rev. 25(3), 209–214 (2017)

    Article  ADS  Google Scholar 

  2. Rai, S. C., Wang, K., Chen, J., Marmon, J. K., Bhatt, M., Wozny, S., Zhou, W.: Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe Core/Shell nanowire array,. Adv. Electron. Mater. 1(4), 1400050 (2015)

    Article  Google Scholar 

  3. Zhang, X., Wu, D., Geng, H.: Heterojunctions based on II-VI Compound Semiconductor One-Dimensional Nanostructures and their optoelectronic applications. Crystals. 7(10), 307 (2017)

    Article  Google Scholar 

  4. Sato, K., Katayama-Yoshida, H.: First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367–376 (2002)

    Article  ADS  Google Scholar 

  5. Dietl, T., Ohno, H., Matsukura, F.: Ferromagnetic semiconductor heterostructures for spintronics. Ieee Transactions on Electron Devices 54(5), 945–954 (2007)

    Article  ADS  Google Scholar 

  6. Khare, K., Singh, S., Kushwah, K. K.: Synthesis, characterizations & applications of II-VI quantum dots: A review. Nano Trends-A Journal of Nano Technology & Its Applications. 20(3), 36–38 (2019)

    Google Scholar 

  7. Kim, N. H., Ryu, S. H., Noh, H. S., Lee, W. S.: Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature. Mat. Sci. Semicon. Proc. 15(2), 125–130 (2012)

    Article  Google Scholar 

  8. Ekuma, E. C., Franklin, L., Zhao, G. L., Wang, J. T., Bagayoko, D.: Ab-initio local density approximation description of the electronic properties of zinc blende cadmium sulfide (zb-CdS). Physica B. 406(8), 1477–1480 (2011)

    Article  ADS  Google Scholar 

  9. Ley, L., Pollak, R. A., McFeely, F. R., Kowalczyk, S. P., Shirley, D. A.: Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy. Phys. Rev. B. 9(2), 600 (1974)

    Article  ADS  Google Scholar 

  10. Derin, H., Kantarlı, K.: Structural and optical characterization of thermally evaporated cadmium sulfide thin films. Surf. Interface Anal. 41, 61–68 (2009)

    Article  Google Scholar 

  11. Li, H., Wang, X., Xu, J., Zhang, Q., Bando, Y., Golberg, D., Zhai, T.: One-dimensional CdS nanostructures: a promising candidate for optoelectronics. Adv. Mater. 25(22), 3017–3037 (2013)

    Article  Google Scholar 

  12. Bao, R., Wang, C., Dong, L., Shen, C., Zhao, K., Pan, C.: CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping. Nanoscale 8(15), 8078–8082 (2016)

    Article  ADS  Google Scholar 

  13. Yang, Z., Lu, L., Berard, V. F., He, Q., Kiely, C. J., Berger, B. W., McIntosh, S.: Biomanufacturing of CdS quantum dots. Green Chem. 17(7), 3775–3782 (2015)

    Article  Google Scholar 

  14. Liu, Y., Yang, Y., Yang, J., Guan, Q., Liu, H., Yang, L., Fei, L.: Intrinsic ferromagnetic properties in Cr-doped ZnO diluted magnetic semiconductors. J. Solid. State. Chem. 184(5), 1273–1278 (2011)

    Article  ADS  Google Scholar 

  15. Ohno, H.: A window on the future of spintronics. Nat. mater. 9(12), 952–954 (2010)

    Article  ADS  Google Scholar 

  16. Saravanan, R., Santhi, K., Sivakumar, N., Narayanan, V., Stephen, A.: Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Mater. Charact. 67, 10–16 (2012)

    Article  Google Scholar 

  17. Mediane, N., Goumrhar, F., Drissi, L. B., Htoutou, K., Ahl Laamara, R.: Enhanced electronic and magnetic properties of Cr- and Mn-Doped GeC Zinc Blende. J. Supercond. Nov. Magn. 33(8), 2513–2520 (2020)

    Article  Google Scholar 

  18. Quiroz, H. P., Dussan, A.: Synthesis temperature dependence on magnetic properties of cobalt doped TiO2 thin films for spintronic applications. Appl. Surf. Sci. 484, 688–691 (2019)

    Article  ADS  Google Scholar 

  19. Yi, J. B., Bao, N. N., Luo, X., Fan, H. M., Liu, T., Li, S.: Ferromagnetism in Cr doped In2O3. Thin Solid Films 531, 481–486 (2013)

    Article  ADS  Google Scholar 

  20. Rahman, G., Garcia-Suarez, V. M., Morbec, J. M.: Intrinsic magnetism in nanosheets of SnO2: a first-principles study. J. Magn. Magn. Mater. 328, 104–108 (2013)

    Article  ADS  Google Scholar 

  21. Pan, H., Feng, Y. P., Wu, Q. Y., Huang, Z. G., Lin, J.: Magnetic properties of carbon doped CdS: a first-principles and Monte Carlo study. Phys. Rev. B Condens. Matter. 77(12), 125211 (2008)

    Article  ADS  Google Scholar 

  22. Li, P., Zhang, C.W., Lian, J., Gao, S., Wang, X.: First-principles study on electronic and magnetic properties of Cu-doped CdS. Solid. State Commun. 151(22), 1712–1715 (2011)

    Article  ADS  Google Scholar 

  23. Nabi, A., Majid, A.: First-principles study of the electronic and the magnetic properties of Cr-doped wurtzite cadmium sulfide (Cd1−xCrxS, x = 12.5% and 6.25%). J. Korean Phys. Soc. 67(3), 518–524 (2015)

    Article  ADS  Google Scholar 

  24. Hu, T., Zhang, M., Wang, S., Shi, Q., Cui, G., Sun, S.: CdS: Co diluted magnetic semiconductor nanocrystals: synthesis and ferromagnetism study. CrystEngComm. 13(19), 5646–5649 (2011)

    Article  Google Scholar 

  25. Saeed, Y., Nazir, S., Shaukat, A., Reshak, A. H.: Ab-initio calculations of Co-based diluted magnetic semiconductors Cd1−xCoxX (X= S, Se, Te). J. Magn. Magn. Mater. 322(20), 3214–3222 (2010)

    Article  ADS  Google Scholar 

  26. Bourouis, C., Meddour, A.: First-principles study of structural, electronic and magnetic properties in Cd1−xFexS diluted magnetic semiconductors. J. Magn. Magn. Mater. 324(6), 1040–1045 (2012)

    Article  ADS  Google Scholar 

  27. El-Hagary, M., Soltan, S.: Magnetic behaviour of Fe-doped CdS diluted magnetic semiconducting nanocrystalline thin films. J. Appl. Phys. 112(4), 043907 (2012)

    Article  ADS  Google Scholar 

  28. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  ADS  Google Scholar 

  29. Dietl, T., Ohno, H.: Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014)

    Article  ADS  Google Scholar 

  30. Drissi, L. B., Benyoussef, A., Saidi, E. H., Bousmina, M.: Monte Carlo simulation of magnetic phase transitions in Mn-doped ZnO. J. Magn. Magn. Mater. 323, 3001–3006 (2011)

    Article  ADS  Google Scholar 

  31. Rami, R., Rkhioui, N., Ahl Laamara, R., Drissi, L. B.: Electronic and magnetic properties of TiO2 (co)-doped with (V, Mn) . Mater. Res. Express 4, 126513 (2017)

    Article  ADS  Google Scholar 

  32. Goumrhar, F., Chafi, F. Z., Bahmad, L.: First principle calculations of electronic and magnetic properties of Cr doped HgSe. Physica B 570, 110–115 (2019)

    Article  ADS  Google Scholar 

  33. Sato, K., Katayama-Yoshida, H.: First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002)

    Article  ADS  Google Scholar 

  34. Rami, R., Drissi, L. B., Rkhioui, N., Drissi El Bouzaidi, M., Ahl Laamara, R.: (V, Ti) co-doping effect on electronic and magnetic properties of zb-AlAs. Int. J. Mod. Phys. B 33(27), 1950326 (2019)

    Article  ADS  Google Scholar 

  35. Akai, H.: Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J Phys. Condens. Matter. 1(43), 8045 (1989)

    Article  ADS  Google Scholar 

  36. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., Fiolhais, C., Atoms, molecules: solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46(11), 6671 (1992)

    Article  ADS  Google Scholar 

  37. Perdew, J. P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. MACHIKANEYAMA2002 : H. Akai, Departement of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1,Toyonaka 560-0043, Japan, akai@phys.sci.osaka-u.ac.jp

  39. Nabi, A.: The electronic and the magnetic properties of Mn doped wurtzite CdS: First-principles calculations. Comput. Mater. Sci. 112(A1), 210–218 (2016)

    Article  MathSciNet  Google Scholar 

  40. Pan, H., Feng, Y. P., Wu, Q. Y., Huang, Z. G., Lin, J.: Magnetic properties of carbon doped CdS: a first-principles and Monte Carlo study. Phys. Rev. B 77(12), 125211 (2008)

    Article  ADS  Google Scholar 

  41. Bakke, J. R., Jung, H. J., Tanskanen, J. T., Sinclair, R., Bent, S. F.: Atomic layer deposition of CdS films. Chem. Mater. 22(16), 4669–4678 (2010)

    Article  Google Scholar 

  42. Perdew, J. P., Parr, R. G., Levy, M., Balduz, J.L. Jr: Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49(23), 1691 (1982)

    Article  ADS  Google Scholar 

  43. Sham, L. J., Schluter, M.: Density-functional theory of the energy gap. Phys. Rev. Lett. 51 (20), 1888 (1983)

    Article  ADS  Google Scholar 

  44. Goumrhar, F., Mounkachi, O., Bahmad, L., Salmani, E., Benyoussef, A.: Magnetism in d0 impurities doped CdTe: ab-initio calculations. Appl. Phys. A 126(1), 1–9 (2020)

    Article  Google Scholar 

  45. Suo, Z., Dai, J., Gao, S., Gao, H.: Effect of transition metals (Sc, Ti, V, Cr and Mn) doping on electronic structure and optical properties of CdS. Results Phys. 17, 103058 (2020)

    Article  Google Scholar 

  46. Breviglieri, S. T., Cavalheiro, E. T. G., Chierice, G. O.: Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanoldithiocarbamates. Thermochimica Acta 356, 79–84 (2000)

    Article  Google Scholar 

  47. Aimouch, D. E., Meskine, S., Birsan, A., Kuncser, V., Zaoui, A., Boukortt, A.: Theoretical investigation of the structural, optical and magnetic properties of Mn doped and (Mn, Cr) co-doped CdS in its cubic structure. Mater Chem. Phys. 213, 249–258 (2018)

    Article  Google Scholar 

  48. Salimian, S., Farjami Shayesteh, S.: Structural, optical and magnetic properties of Mn-doped CdS diluted magnetic semiconductor nanoparticles. J. Supercond. Nov. Magn. 25, 2009–2014 (2012)

    Article  Google Scholar 

  49. Ibraheem, F., Mahdy, M. A., Mahmoud, E. A., Ortega, J. E., Rogero, C., Mahdy, I. A., El-Sayed, A.: Tuning paramagnetic effect of Co-Doped CdS diluted magnetic semiconductor quantum dots. J. Alloy. Compd. 834, 155196 (2020)

    Article  Google Scholar 

  50. Dinh, V. A., Sato, K., Katayama-Yoshida, H.: Dilute magnetic semiconductors based on wide bandgap SiO2 with and without transition metal elements. Solid State Commun. 136(1), 1–5 (2005)

    Article  ADS  Google Scholar 

  51. Sato, K., Dederics, P. H., Katayama-Yoshida, H.: Curie temperatures of IIIV diluted magnetic semiconductors calculated from first principles. EPL (Europhysics Letters) 61(3), 403 (2003)

    Article  ADS  Google Scholar 

  52. Monir, M. E. A., Ullah, H., Baltach, H., Ashiq, M. G., Khenata, R.: Mechanical and magneto-electronic properties of half-metallic ferromagnetism in Ti-doped ZnSe and CdSe alloys: Ab initio study. J. Magn. Magn. Mater. 442, 107–117 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the LPHE-MS, Faculty of Sciences, Mohammed V University in Rabat, Morocco, for the technical support through computer facilities, where all the calculations have been performed.

Funding

This work received financial support from “Académie Hassan II des Sciences et Techniques”-Morocco.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. El-Achari or F. Goumrhar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Achari, T., Goumrhar, F., Drissi, L.B. et al. Electronic and Magnetic Properties of (Ti, V, Cr, Mn, and Co)-Doped CdS. J Supercond Nov Magn 34, 1923–1931 (2021). https://doi.org/10.1007/s10948-021-05839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05839-5

Keywords

Navigation