Skip to main content
Log in

Theoretical investigation of the role of the organic cation in methylammonium lead iodide perovskite

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The hybrid halide perovskite \(\hbox {CH}_3\hbox {NH}_3\hbox {PbI}_3\) is easy to manufacture and inexpensive. Despite these, its efficiency as a solar cell is comparable to today’s efficient solar cells. For these reasons, it is attracting a lot of attention today. However, the effects of the \(\hbox {CH}_3\hbox {NH}_3^+\) (MA) cation in the perovskite structure on the electronic and structural properties are still a matter of debate. Previous studies have generally focused on the rotation of the MA cation. In this study, from a different perspective, the effects of the movement of the MA cation along the C–N axis are investigated. With this method, the effects of the MA cation were examined in a more controlled way. In this study, density functional theory that accounts for van der Waals interactions was used in the calculations for the cases. According to the data obtained, H–I bonds are formed between the MA cation and the inorganic framework. Although these bonds are predominantly hydrogen bonds, they also have ionic bond characteristics. Within the structure, the H–I-bond length tends to be preserved, although the position of the MA changes. In this mechanism, the I ion plays an important role by moving away from its place in the Pb–I–Pb alignment. The position of the I ion determines the nature of the band-gap transition. Another effect is on the value of the band gap. Depending on the position of the I ion, the band gap may narrow by about 0.26 eV. The separation of the I ion from the Pb–I–Pb alignment by the effect of the MA cation breaks the inverse symmetry. According to the data obtained from this study, this mechanism in the band gap is due to the breaking of the inverse symmetry in the crystal structure.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

No data are associated in the manuscript.

References

  1. P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Mater. Today 17, 16 (2014). https://doi.org/10.1016/j.mattod.2013.12.002

    Article  Google Scholar 

  2. M. Antonietta Loi, J.C. Hummelen, Nat. Mater. 12, 1087 (2013). https://doi.org/10.1038/nmat3815

    Article  ADS  Google Scholar 

  3. F. Zhang, J.F. Castaneda, S. Chen, W. Wu, M.J. DiNezza, M. Lassise, W. Nie, A. Mohite, Y. Liu, S. Liu, D. Friedman, H. Liu, Q. Chen, Y.-H. Zhang, J. Huang, Y. Zhang, Mater. Today 36, 18 (2020). https://doi.org/10.1016/j.mattod.2020.01.001

    Article  Google Scholar 

  4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  5. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347, 519 (2015). https://doi.org/10.1126/science.aaa2725

    Article  ADS  Google Scholar 

  6. Y. Bi, E.M. Hutter, Y. Fang, Q. Dong, J. Huang, T.J. Savenije, J. Phys. Chem. Lett. 7, 923 (2016). https://doi.org/10.1021/acs.jpclett.6b00269

    Article  Google Scholar 

  7. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967 (2015). https://doi.org/10.1126/science.aaa5760

    Article  ADS  Google Scholar 

  8. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S.I. Seok, Nature 598, 444 (2021). https://doi.org/10.1038/s41586-021-03964-8

    Article  ADS  Google Scholar 

  9. W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778

    Article  ADS  Google Scholar 

  10. F. Brivio, K.T. Butler, A. Walsh, M. van Schilfgaarde, Phys. Rev. B 89, 155204 (2014). https://doi.org/10.1103/PhysRevB.89.155204

    Article  ADS  Google Scholar 

  11. P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014). https://doi.org/10.1038/srep04467

    Article  Google Scholar 

  12. C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 6, 7026 (2015). https://doi.org/10.1038/ncomms8026

    Article  ADS  Google Scholar 

  13. K.P. Ong, S. Wu, T.H. Nguyen, D.J. Singh, Z. Fan, M.B. Sullivan, C. Dang, Sci. Rep. 9, 2144 (2019). https://doi.org/10.1038/s41598-018-38023-2

    Article  ADS  Google Scholar 

  14. C. Quarti, E. Mosconi, J.M. Ball, V. D’Innocenzo, C. Tao, S. Pathak, H.J. Snaith, A. Petrozza, F. De Angelis, Energy Environ. Sci. 9, 155 (2016). https://doi.org/10.1039/C5EE02925B

    Article  Google Scholar 

  15. A. Poglitsch, D. Weber, J. Chem. Phys. 87, 6373 (1987). https://doi.org/10.1063/1.453467

    Article  ADS  Google Scholar 

  16. R. Wasylishen, O. Knop, J. Macdonald, Solid State Commun. 56, 581 (1985). https://doi.org/10.1016/0038-1098(85)90959-7

    Article  ADS  Google Scholar 

  17. R. Klinkla, V. Sakulsupich, T. Pakornchote, U. Pinsook, T. Bovornratanaraks, Sci. Rep. 8, 13161 (2018). https://doi.org/10.1038/s41598-018-31462-x

    Article  ADS  Google Scholar 

  18. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  19. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  21. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  23. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  25. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401

    Article  ADS  Google Scholar 

  26. J. Klimeš, D.R. Bowler, A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2009). https://doi.org/10.1088/0953-8984/22/2/022201

    Article  ADS  Google Scholar 

  27. J. Klimeš, D.R. Bowler, A. Michaelides, Phys. Rev. B 83, 195131 (2011). https://doi.org/10.1103/PhysRevB.83.195131

    Article  ADS  Google Scholar 

  28. I. Hamada, Phys. Rev. B 89, 121103 (2014). https://doi.org/10.1103/PhysRevB.89.121103

    Article  ADS  Google Scholar 

  29. H. Peng, Z.-H. Yang, J.P. Perdew, J. Sun, Phys. Rev. X 6, 041005 (2016). https://doi.org/10.1103/PhysRevX.6.041005

  30. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013). https://doi.org/10.1039/C3TA10518K

    Article  Google Scholar 

  31. C.A. López, C. Abia, J.E. Rodrigues, F. Serrano-Sánchez, N.M. Nemes, J.L. Martínez, M.T. Fernandez-Díaz, N. Biškup, C. Alvarez-Galván, F. Carrascoso, A. Castellanos-Gomez, J.A. Alonso, Sci. Rep. 10, 11228 (2020). https://doi.org/10.1038/s41598-020-68085-0

    Article  ADS  Google Scholar 

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204

    Article  ADS  Google Scholar 

  34. F. Brivio, A.B. Walker, A. Walsh, APL Mater. 1, 042111 (2013). https://doi.org/10.1063/1.4824147

    Article  ADS  Google Scholar 

  35. C.-J. Yu, U.-G. Jong, M.-H. Ri, G.-C. Ri, Y.-H. Pae, J. Mater. Sci. 51, 9849 (2016). https://doi.org/10.1007/s10853-016-0217-9

    Article  ADS  Google Scholar 

  36. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, J. Mater. Chem. A 3, 8926 (2015). https://doi.org/10.1039/C4TA05033A

    Article  Google Scholar 

  37. S.X. Tao, X. Cao, P.A. Bobbert, Sci. Rep. 7, 14386 (2017). https://doi.org/10.1038/s41598-017-14435-4

    Article  ADS  Google Scholar 

  38. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060

    Article  ADS  Google Scholar 

  39. V. Çelik, Phys. B 619, 413236 (2021). https://doi.org/10.1016/j.physb.2021.413236

    Article  Google Scholar 

  40. S. Wang, W.-B. Xiao, F. Wang, RSC Adv. 10, 32364 (2020). https://doi.org/10.1039/D0RA06028C

    Article  ADS  Google Scholar 

  41. C. Quarti, E. Mosconi, F. De Angelis, Chem. Mater. 26, 6557 (2014). https://doi.org/10.1021/cm5032046

    Article  Google Scholar 

  42. J. Yang, A. Jain, W.-L. Ong, Mater. Today Phys. 28, 100892 (2022). https://doi.org/10.1016/j.mtphys.2022.100892

    Article  Google Scholar 

  43. J.-H. Lee, N.C. Bristowe, P.D. Bristowe, A.K. Cheetham, Chem. Commun. 51, 6434 (2015). https://doi.org/10.1039/C5CC00979K

    Article  Google Scholar 

  44. J.H. Lee, J.-H. Lee, E.-H. Kong, H.M. Jang, Sci. Rep. 6, 21687 (2016). https://doi.org/10.1038/srep21687

    Article  ADS  Google Scholar 

  45. E. Rashba, Sov. Phys.-Solid State 2, 1109 (1960). https://cir.nii.ac.jp/crid/1571698600346713472

  46. F. Zheng, L.Z. Tan, S. Liu, A.M. Rappe, Nano Lett. 15, 7794 (2015). https://doi.org/10.1021/acs.nanolett.5b01854

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veysel Çelik.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, V. Theoretical investigation of the role of the organic cation in methylammonium lead iodide perovskite. Eur. Phys. J. B 96, 101 (2023). https://doi.org/10.1140/epjb/s10051-023-00556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00556-5

Navigation