Skip to main content
Log in

Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3(X = I, Br) including van der Waals interaction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using density functional theory with the inclusion of van der Waals (vdW) interaction, we have investigated electronic energy bands, density of states, effective masses of charge carriers, and photoabsorption coefficients of pseudocubic CH3NH3PbX3 (X = I, Br). Our results confirm the direct band gap of 1.49 (1.92) eV for X = I (Br) in the pseudocubic Pm phase with lattice constant of 6.324 (5.966) Å, being agreed well with experiment and indicating the necessity of vdW correction. The calculated photoabsorption coefficients for X = I (Br) have the onset at red (orange) color and the first peak around violet (ultraviolet) color in overall agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Li C, Soh KCK, Wu P (2004) Formability of ABO3 perovskites. J Alloys Compd 372:40–48

    Article  Google Scholar 

  2. Yu C-J, Emmerich H (2007) An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1-x)BiScO3-xPbTiO3. J Phys 19:306203

    Google Scholar 

  3. Kojima A, Teshima K, Shirai Y, Miyasaka TJ (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  4. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Article  Google Scholar 

  5. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Peng G, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  6. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  7. Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  Google Scholar 

  8. Lindblad R, Bi D, Park B-W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson EMJ, Rensmo H (2014) Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett 5:648–653

    Article  Google Scholar 

  9. Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590

    Article  Google Scholar 

  10. Mosconi E, Amat A, Nazeeruddin MK, Grätzel M, Angelis FD (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117:13902–13913

    Article  Google Scholar 

  11. Even J, Pedesseau L, Jancu JM, Katan C (2013) Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4:2999–3005

    Article  Google Scholar 

  12. Brivio F, Walker AB, Walsh A (2013) Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Matter 1:042111

    Article  Google Scholar 

  13. Chung I, Lee B, He J, Chang RP, Kanatzidis MG (2012) Interface engineering of highly efficient perovskite solar cells. Nature 485:486–489

    Article  Google Scholar 

  14. Jianga LQ, Guob JK, Liua HB, Zhua M, Zhoua X, Wuc P, Li CH (2006) Prediction of lattice constant in cubic perovskites. J Phys Chem Solids 67:1531–1536

    Article  Google Scholar 

  15. Poglitsch A, Weber D (1987) Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87:6373–6378

    Article  Google Scholar 

  16. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Grätzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641

    Article  Google Scholar 

  17. Mashiyama H, Kawamura Y, Kasano H, Asahi T, Noda Y, Kimura H (2007) Disordered configuration of methylammonium of CH3NH3PbBr 3 determined by single crystal neutron diffractometry. Ferroelectrics 348:182–186

    Article  Google Scholar 

  18. Onoda-Yamamuro N, Matsuo T, Suga H (1990) Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J Phys Chem Solids 51:1383–1395

    Article  Google Scholar 

  19. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Coccioni M, Dabo I et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J phys 21(39):395502

    Google Scholar 

  20. We used the pseudopotentials C.pbe-van_ak.UPF, H.pbe-van_ak.UPF, N.pbevan_ak.UPF, Pb.pbe-d-van.UPF, I.pbe-van_mit.UPF, and Br.pbe-van_mit. UPF from http://www.quantum-espresso.org

  21. Yu C-J, Ri G-C, Jong U-G, Choe Y-G, Cha S-J (2014) Refined phase coexistence line between graphite and diamond from density-functional theory and van der Waals correction. Phys B 434:185–193

    Article  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  23. Roman-Perez G, Soler JM (2009) Efficient Implementation of a van der Waals Density Functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102

    Article  Google Scholar 

  24. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  25. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  Google Scholar 

  26. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    Article  Google Scholar 

  27. Liu C, Qiu Z, Meng W, Chen J, Qi J, Dong C, Wangn M (2015) Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr 3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter. Nano Energy 12:59–68

    Article  Google Scholar 

  28. Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6:7026

    Article  Google Scholar 

  29. Zhang GX, Tkatchenko A, Paier J, Appel H, Scheffler M (2011) van der Waals interactions in ionic and semiconductor solids. Phys Rev Lett 107:245501

    Article  Google Scholar 

  30. Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 108:236402

    Article  Google Scholar 

  31. Wolf SD, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum J-H, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039

    Article  Google Scholar 

  32. Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G (2013) Oxide heterostructures for efficient solar cells. Phys Rev Lett 110:078701

    Article  Google Scholar 

Download references

Acknowledgements

The simulations have been performed on the HP Blade System c7000 (HP BL460c) that is owned and managed by Faculty of Materials Science, Kim Il Sung University. This work was supported partially by the Committee of Education, DPR Korea, under the project entitled “Strong correlation phenomena in superhard, superconducting and nano materials” (Grant Number 02-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol-Jun Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CJ., Jong, UG., Ri, MH. et al. Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3(X = I, Br) including van der Waals interaction. J Mater Sci 51, 9849–9854 (2016). https://doi.org/10.1007/s10853-016-0217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0217-9

Keywords

Navigation