Skip to main content

Advertisement

Log in

Criticality in electronic structure of two graphene layers containing praseodymium superhydride doped molecules

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Compressed hydrogen-rich compounds have been verified extensively by theoretical scientists for finding high-temperature superconductivity. Although some experiments confirm these findings, their requirement of extremely high critical pressure condition (\( 100\ \text {GPa }\lesssim P_c\)) makes them impossible to apply in daily life. The main purpose of present work is to help finding materials with high-temperature superconductivity at low pressures. For this purpose, we consider two graphene sheets with sine form corrugations whose honeycomb patterns are exactly on top of each other with some doped molecules intercalated into sheets. The free energy of valence electrons of total atoms is computed for doped molecules PrH\( _{6}\), PrH\( _{7}\), PrH\( _{8}\), and PrH\( _{9}\), separately. Our calculations indicate a second-order phase transition for PrH\( _{9}\) at critical temperature \(T_c =179.01 \ \text {K}\) with applying no external pressure, while no phase transition is observed for other doped molecules. This high-temperature electronic structural stability is \(46 \ \text {K} \) greater than the \(T_c\) of the cuprate materials which are the highest-temperature superconductors at low pressures. We guess this phase transition is a superconductivity transition due to the observation of Meissner effect in magnetic susceptibility diagram.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. N.W. Ashcroft, Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968)

    Article  ADS  Google Scholar 

  2. W. Zhao, H. Song, M. Du, Q. Jiang, T. Ma, M. Xu, D. Duan, T. Cui, Pressure-induced high-temperature superconductivity in ternary YZr-H compounds. Phys. Chem. Chem. Phys. 2209, 04217 (2022)

    Google Scholar 

  3. N.W. Ashcroft, Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004)

    Article  ADS  Google Scholar 

  4. F. Peng, Y. Sun, C.J. Pickard, R.J. Needs, Q. Wu, Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017)

    Article  ADS  Google Scholar 

  5. Y. Li, J. Hao, H. Liu, J.S. Tse, Y. Wang, Y. Ma, Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015)

    Article  ADS  Google Scholar 

  6. H. Wang, J.S. Tse, K. Tanaka, T. Iitaka, Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures. PNAS 109, 6463 (2012)

    Article  ADS  Google Scholar 

  7. H. Liu, I.I. Naumov, Z.M. Geballe, M. Somayazulu, J.S. Tse, R.J. Hemley, Dynamics and superconductivity in compressed lanthanum superhydride. Phys. Rev. B 98, 100102 (2018)

    Article  ADS  Google Scholar 

  8. L. Liu, C. Wang, S. Yi, K.W. Kim, J. Kim, J. Cho, Microscopic mechanism of room-temperature superconductivity in compressed LaH\(_{10}\). Phys. Rev. B 99, 140501 (2019)

    Article  ADS  Google Scholar 

  9. I.A. Kruglov et al., Superconductivity of LaH\(_{10}\) and LaH\(_{16}\) polyhydrides. Phys. Rev. B 101, 024508 (2020)

    Article  ADS  Google Scholar 

  10. H. Liu, I.I. Naumov, R. Hoffmann, N.W. Ashcroft, R.J. Hemley, Potential high-T\(_c\) superconducting lanthanum and yttrium hydrides at high pressure. PNAS 114, 6990 (2017)

    Article  ADS  Google Scholar 

  11. P. Tsuppayakorn-aek et al., Roles of optical phonons and logarithmic profile of electron-phonon coupling integration in superconducting Sc\(_{0.5}\) Y\(_{0.5}\) H\(_6\) superhydride under pressures. J. Alloys Compounds 901, 163524 (2022)

  12. I. Errea et al., High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015)

    Article  ADS  Google Scholar 

  13. A.P. Drozdov et al., Superconductivity at \(250 K\) in lanthanum hydride under high pressures. Nature 569, 528 (2019)

    Article  ADS  Google Scholar 

  14. D.Y. Kim et al., General trend for pressurized superconducting hydrogen-dense materials. Proc. Natl. Acad. Sci. USA 107, 2793 (2010)

    Article  ADS  Google Scholar 

  15. K. Tanaka, J.S. Tse, H. Liu, Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B 96, 100502 (2017)

    Article  ADS  Google Scholar 

  16. E. Snider et al., Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373 (2020)

    Article  ADS  Google Scholar 

  17. U. Pinsook et al., Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure. J. Alloys Comp. 849, 156434 (2020)

    Article  Google Scholar 

  18. U. Pinsook et al., Superconductivity of superhydride CeH\(_{10}\) under high pressure. Mater. Res. Express 7, 086001 (2020)

    Article  ADS  Google Scholar 

  19. T. Bovornratanaraks et al., Enthalpy stabilization of superconductivity in an alloying S-P-H system: first-principles cluster expansion study under high pressure. Comput. Mater. Sci. 190, 110282 (2021)

    Article  Google Scholar 

  20. T. Bovornratanaraks et al., High-temperature superconductor of sodalite-like clathrate hafnium hexahydride. Sci. Rep. 11, 16403 (2021)

    Article  ADS  Google Scholar 

  21. T. Bovornratanaraks et al., Superconducting gap of pressure stabilized (Al\(_{0.5}\)Zr\(_{0.5}\))H\(_3\) from Ab initio anisotropic migdal-eliashberg theory. ACS Omeg 7, 28190 (2022)

    Article  Google Scholar 

  22. T. Bovornratanaraks et al., First-principles calculations on superconductivity and H-diffusion kinetics in Mg-B-H phases under pressures. Int. J. Hydrogen Energy 48, 4006 (2023)

    Article  Google Scholar 

  23. W. Luo et al., Superconducting state of the van der Waals layered PdH\(_2\) structure at high pressure. Int. J. Hydrogen Energy 48, 16769 (2023)

    Article  Google Scholar 

  24. J.G. Bednorz, K.A. Mueller, Possible high T superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  25. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363, 56 (1993)

    Article  ADS  Google Scholar 

  26. J.W. Clark, Variational theory of nuclear matter. Prog. Part. Nucl. Phys. 2, 89 (1979)

    Article  ADS  Google Scholar 

  27. A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nature 6, 858 (2007)

    Article  Google Scholar 

  28. G.H. Bordbar, M.A. Rastkhadiv, Liquid phase of \(^3\)He on a corrugated graphene. Rom. J. Phys. 64, 605 (2019)

    Google Scholar 

  29. G. H. Bordbar et al., Critical behavior of two-dimensional fluid \(^3\)He on a sinusoidal graphene. Accepted by the Journal of the Physical Society of Japan

  30. M.A. Rastkhadiv, High-temperature structural stability of superhydride into graphene sheets at low pressure. J. Supercond. Nov. Magn. 35, 2777 (2022)

    Article  Google Scholar 

  31. M.C. Gordillo, J. Boronat, Liquid and solid phases of \(^3\)He on graphite. Phys. Rev. Lett. 116, 145301 (2016)

    Article  ADS  Google Scholar 

  32. N. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Cornwall, 1976)

    MATH  Google Scholar 

  33. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford Univ. Press, 1987)

    Google Scholar 

  34. P.B. Allen, R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975)

  35. G.M. Eliashberg, TInteraction between electrons and lattice vibrations in a superconductor. Zh. Eksp. Teor. Fiz. 38, 966 (1960). (Sov. Phys. JETP 11, 696 (1960))

    Google Scholar 

  36. J.G. Bednorz, K.A. Mueller, Possible high T superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  37. A.P. Drozdov et al., Conventional superconductivity at \( 203\) kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  38. M.L. Cohen, Superconductivity in modified semiconductors and the path to higher transition temperatures. Supercond. Sci. Tech. 28, 043001 (2015)

    Article  ADS  Google Scholar 

  39. J.F. Annett, Superconductivity, Superfluids, and Condensates (Oxford Univ. Press, 2004)

    Google Scholar 

  40. R. C. Dougherty and J. D. Kimel, Temperature dependence of the superconductor energy gap. arXiv:1212.0423

  41. S. Suetsugu et al., Giant orbital diamagnetism of three-dimensional Dirac electrons in \(Sr_3PbO\) antiperovskite. Phys. Rev. B 103, 115117 (2021)

    Article  ADS  Google Scholar 

  42. J.W. McClure, Diamagnetism of graphite. Phys. Rev. 104, 666 (1956)

    Article  ADS  Google Scholar 

  43. M. Koshino, T. Ando, Anomalous orbital magnetism in Dirac-electron systems: role of pseudospin paramagnetism. Phys. Rev. B 81, 195431 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. A. Rastkhadiv thanks Dr. Vahid Tumani and Dr. Ahmad Poostforoush for fruitful discussions.

Funding

This research did not receive any grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rastkhadiv.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest or competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastkhadiv, M.A. Criticality in electronic structure of two graphene layers containing praseodymium superhydride doped molecules. Eur. Phys. J. B 96, 79 (2023). https://doi.org/10.1140/epjb/s10051-023-00545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00545-8

Navigation