Skip to main content
Log in

High-Temperature Structural Stability of Intercalated Cerium Superhydride into Graphene Sheets at Low Pressure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Finding high-temperature superconductors has been one of the main challenges of condensed matter physics. Recent progress in this regard includes the reports of room-temperature superconductivity in carbonaceous sulfur hydride. However, this superconductivity is strongly restricted by an extremely high-pressure condition (\(\sim 100GPa\)) that makes it difficult to apply in technology and industry. Therefore, the cuprate materials with \(T_c=133.5 \ K\) are considered as the highest temperature superconductors at low pressures. The main purpose of the present work is to open doors toward finding high-temperature superconductivity at low pressure. For this purpose, we consider two graphene layers with sine form corrugations where their honeycomb patterns are exactly on top of each other with some doped molecules placed between them. We consider H\(_2\)S, H\(_3\)S, and CeH\(_{9}\) as doped molecules, separately. Employing the lowest-order constrained variational method, we calculate thermodynamic quantities of the system. Based on pressure-density and magnetic susceptibility diagrams of the system, we observe a second-order phase transition at \(T_c=186.3 \ K\) and \(P_c=2.35 \ K.\mathring{A}^{-3}\) for valence electrons with CeH\(_{9}\) doped molecules. Meanwhile, no phase transition occurs for H\(_2\)S and H\(_3\)S at \(T>133.5 \ K\). The novel result of this paper is the prediction of a critical temperature which is approximately \(53 \ K\) greater than the cuprate materials without applying the external pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Onnes, H.K.: The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 1 (1911)

    Google Scholar 

  2. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  3. Migdal, A.B.: Interaction between electrons and lattice vibrations in a normal metal. Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov.Phys. JETP 7, 996 (1958)]

  4. Eliashberg, G.M.: Interaction between electrons and lattice vibrations in a superconductor. Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov.Phys. JETP 11, 696 (1960)]

  5. Drozdov, A.P., et al.: Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528 (2019)

    Article  ADS  Google Scholar 

  6. Bednorz, J.G., Mueller, K.A.: Possible high T superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  7. Schilling, A., Cantoni, M., Guo, J.D., Ott, H.R.: Superconductivity above 130 K in the HgBaCaCuO system. Nature 363, 56 (1993)

    Article  ADS  Google Scholar 

  8. Liu, H., et al.: Dynamics and superconductivity in compressed lanthanum superhydride. Phys. Rev. B 98, 100102 (2018)

  9. Peng, F., et al.: Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017)

  10. Liu, L., et al.: Microscopic mechanism of room-temperature superconductivity in compressed LaH\(_{10}\). Phys. Rev. B 99, 140501 (2019)

  11. Wang, H., et al.: Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463 (2012)

    Article  ADS  Google Scholar 

  12. Li, Y., et al.: Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015)

    Article  Google Scholar 

  13. Kruglov, I.A., et al.: Superconductivity of LaH\(_{10}\) and LaH\(_{16}\) polyhydrides. Phys. Rev. B 101, 024508 (2020)

  14. Liu, H., et al.: Potential high-T\(_c\) superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990 (2017)

  15. Zurek, E.: In Handbook of Solid State Chemistry, editors: R. Dronskowski, S. Kikkawa, and A. Stein, (Wiley-VCH, Weinheim, 2017)

  16. Wang, Y., Lv, J., Zhu, L., Ma, Y.: Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010)

  17. Oganov, A.R., Glass, C.W.: Crystal structure prediction using evolutionary algorithms: principles and applications. J. Chem. Phys. 124, 244704 (2006)

  18. Pickard, C.J., Needs, R.J.: Ab initio random structure searching. Nature 23, 053201 (2011)

  19. A. Sanna, et al. Ab initio Eliashberg theory: making genuine predictions of superconducting features. J. Phys. Soc. Jpn. 87, 041012 (2018)

  20. Lders, M., et al.:  Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals. Phys. Rev. B 72, 024545 (2005)

  21. Boeri, L.: in Handbook of Materials Modeling, editors: S. Yip and W. Andreoni, (Springer, Basel 2018)

  22. Errea, I., et al.: High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015)

  23. Wigner, E., Huntington, H.B.: On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764 (1935)

    Article  ADS  Google Scholar 

  24. Ashcroft, N.W.: Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968)

  25. Richardson, C.F., Ashcroft, N.W.: High temperature superconductivity in metallic hydrogen: electron-electron enhancements. Phys. Rev. Lett. 78, 118 (1997)

    Article  ADS  Google Scholar 

  26. Dias, R.P., Silvera, I.F.: Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715 (2017)

    Article  ADS  Google Scholar 

  27. Eremets, M.I., et al.: Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246 (2019)

    Article  Google Scholar 

  28. Zaghoo, M., Salamat, A., Silvera, I.F.: Evidence of a first-order phase transition to metallic hydrogen. Phys. Rev. B 93, 155128 (2016)

  29. Drozdov, A.P., et al.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  30. Sun, Y., et al.: Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123, 097001 (2019)

  31. Snider, E., et al.: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373 (2020)

    Article  ADS  Google Scholar 

  32. Bi, T., Zarifi, N., Terpstra, T., Zurek, E.: The search for superconductivity in high pressure hydrides. Ref. Module in Chem., Molecular Sci. and Chemical Engin. https://doi.org/10.1016/B978-0-12-409547-2.11435-0 (Elsevier, 2019)

  33. Pickard, C.J., Errea, I., Eremets, M.I.: Superconducting hydrides under pressure. Annu. Rev. Conden. Matter Phys. 11, 57 (2020)

    Article  Google Scholar 

  34. Dias, R.P., et al.: Superconductivity in highly disordered dense carbon disulfide. Proc. Natl. Acad. Sci. USA 110, 11720 (2013)

    Article  ADS  Google Scholar 

  35. Struzhkin, V., Hemley, R.J., Mao, H., Timofeev, Y.A.: Superconductivity at 10-17 K in compressed sulphur. Nature 390, 382 (1997)

    Article  ADS  Google Scholar 

  36. Shimizu, K., et al.: Superconductivity in oxygen. Nature 393, 767 (1998)

    Article  ADS  Google Scholar 

  37. Kim, D.Y., et al.: General trend for pressurized superconducting hydrogen-dense materials. Proceed. Natl. Acad. Sci. USA 107, 2793 (2010)

    Article  ADS  Google Scholar 

  38. Tanaka, K., Tse, J.S., Liu, H.: Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure. Phys. Rev. B 96, 100502 (2017)

  39. Bordbar, G.H., Rastkhadiv, M.A.: Liquid phase of \(^3\)He on a corrugated graphene. Rom. J. Phys. 64, 605 (2019)

  40. Clark, J.W.: Variational theory of nuclear matter. Prog. Part. Nucl. Phys. 2, 89 (1979)

  41. Takahashi, Y.: Spin Fluctuation theory of itinerant electron magnetism (Springer, 2013)

  42. Pano, R.M., Carlson J.: Fermion monte carlo algorithms and liquid \(^3\)He. Phys. Rev. Lett. 62, 1130 (1989)

  43. Kindermann, M., Wetterich, C.: Phase transitions in liquid \(^3\)He. Phys. Rev. Lett. 86, 1034 (2001)

  44. Pricaupenko, L., Treiner, J.: Phase separation of liquid \(^3\)He-\(^4\)He mixtures: effect of confinement. Phys. Rev. Lett. 74, 430 (1995)

  45. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  46. Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nature 6, 858 (2007)

    Article  Google Scholar 

  47. Gordillo, M.C., Boronat, J.: Liquid and solid phases of \(^3\)He on graphite. Phys. Rev. Lett. 116, 145301 (2016)

  48. Ashcroft, N., Mermin, N.D.: Solid state physics. Saunders College, Cornwall (1976)

    MATH  Google Scholar 

  49. Pathria, R.K.: Statistical mechanics. Hartnolls Limited Bodmin, Cornwall (1996)

    MATH  Google Scholar 

  50. Ashcroft, N.W.: Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004)

  51. Cohen, M.L.: Superconductivity in modified semiconductors and the path to higher transition temperatures. Supercond. Sci. Tech. 28, 043001 (2015)

  52. McClure, J.W.: Diamagnetism of graphite Phys. Rev. 104, 666 (1956)

  53. Suetsugu, S., et al.: Giant orbital diamagnetism of three-dimensional Dirac electrons in \(Sr_3PbO\) antiperovskite Phys. Rev. B 103, 115117 (2021)

  54. Koshino, M., Ando, T.: Anomalous orbital magnetism in Dirac-electron systems: role of pseudospin paramagnetism Phys. Rev. B 81, 195431 (2010)

  55. Maebashi, H., et al.: Large diamagnetism and electromagnetic duality in two-dimensional Dirac electron system Phys. Rev. Lett. 128, 027201 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rastkhadiv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastkhadiv, M.A. High-Temperature Structural Stability of Intercalated Cerium Superhydride into Graphene Sheets at Low Pressure. J Supercond Nov Magn 35, 2777–2784 (2022). https://doi.org/10.1007/s10948-022-06332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06332-3

Keywords

Navigation