Skip to main content
Log in

One-qubit Aharonov–Bhom phase gate constructed by Majorana zero-energy states

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A well-known scheme for generating Majorana zero-energy modes is a heterojunction of s-wave superconductor and topological insulator that induces an equivalent two-dimensional p-wave superconductor at the interface. In this work, we construct a cylindrical system based on the heterojunction with the external magnetic field. We investigate the Aharonov–Bhom phase (A–B phase) of Majorana zero-energy state, find that the A–B phase between two Majorana zero-energy states located at the inner and outer boundaries of the ring system will interfere with each other. The intensity of interference fringes may change with A–B phase, which indicates that we can store the quantum information through the A–B phase and construct a single qubit A–B phase gate. We further explore the splitting of zero-bias conductance peak caused by the A–B phase and adjust the splitting energy by the A–B phase.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theoretical study and no experimental data.]

References

  1. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012). https://doi.org/10.1088/0034-4885/75/7/076501

    Article  ADS  Google Scholar 

  2. M. Leijnse, K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012). https://doi.org/10.1088/0268-1242/27/12/124003

    Article  ADS  Google Scholar 

  3. C. Beenakker, Annu. Rev. Conden. Ma. P. 4, 113 (2013). https://doi.org/10.1146/annurev-conmatphys-030212-184337

  4. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. DasSarma, Rev. Mod. Phys. 80, 1083 (2008). https://doi.org/10.1103/revmodphys.80.1083

    Article  ADS  Google Scholar 

  5. A. Kitaev, Ann. Phys. 303, 2 (2003). https://doi.org/10.1016/s0003-4916(02)00018-0

    Article  ADS  Google Scholar 

  6. S. Zhu, L. Kong, L. Cao, H. Chen, M. Papaj, S. Du, Y. Xing, W. Liu, D. Wang, C. Shen, F. Yang, J. Schneeloch, R. Zhong, G. Gu, L. Fu, Y.-Y. Zhang, H. Ding, H.-J. Gao, Science 367, 189 (2019). https://doi.org/10.1126/science.aax0274

  7. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008). https://doi.org/10.1103/physrevlett.100.096407

    Article  ADS  Google Scholar 

  8. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000). https://doi.org/10.1103/physrevb.61.10267

    Article  ADS  Google Scholar 

  9. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012). https://doi.org/10.1038/nphys2479

    Article  Google Scholar 

  10. J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 (2000). https://doi.org/10.1038/35002528

    Article  ADS  Google Scholar 

  11. P. Solinas, P. Zanardi, N. Zanghì, F. Rossi, Phys. Rev. A. 67, 052309 (2003). https://doi.org/10.1103/physreva.67.052309

    Article  ADS  Google Scholar 

  12. A. Shnirman, G. Schon, Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997). https://doi.org/10.1103/physrevlett.79.2371

    Article  ADS  Google Scholar 

  13. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995). https://doi.org/10.1103/physrevlett.74.4091

    Article  ADS  Google Scholar 

  14. T. Sleator, H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995). https://doi.org/10.1103/physrevlett.74.4087

  15. Z.-Z. Li, Solid State Theory (High Education Press, Beijing, 2002)

    Google Scholar 

  16. R.S. Akzyanov, A.L. Rakhmanov, A.V. Rozhkov, F. Nori, Phys. Rev. B 94, 125428 (2016). https://doi.org/10.1103/physrevb.94.125428

    Article  ADS  Google Scholar 

  17. M. Cheng, R.M. Lutchyn, V. Galitski, S. DasSarma, Phys. Rev. Lett. 103, 107001 (2009). https://doi.org/10.1103/physrevlett.103.107001

    Article  ADS  Google Scholar 

  18. S. DasSarma, J.D. Sau, T.D. Stanescu, Phys. Rev. B 86, 220506 (2012). https://doi.org/10.1103/physrevb.86.220506(R)

    Article  ADS  Google Scholar 

  19. A. Teixeira, V. Carvalho-Santos, J. Fonseca, Phys. Lett. A 384, 126182 (2020). https://doi.org/10.1016/j.physleta.2019.126182

    Article  MathSciNet  Google Scholar 

  20. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/cbo9780511976667

  21. A. Barenco, D. Deutsch, A. Ekert, R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995). https://doi.org/10.1103/physrevlett.74.4083

    Article  ADS  Google Scholar 

  22. L.-M. Duan, J.I. Cirac, P. Zoller, Science 292, 1695 (2001). https://doi.org/10.1126/science.1058835

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Training Program of Major Research plan of the National Natural Science Foundation of China (Grant no. 92165105), the National Key R &D Program of China (Grant no. 2018YFA0305800, no. 2022YFA1402800), and the NSFC (Grant nos. 11974348, 11834014). It is also supported by the Fundamental Research Funds for the Central Universities and the Strategic Priority Research Program of CAS (Grant nos. XDB28000000 and XDB33000000), and CAS Project for Young Scientists in Basic ResearchGrant no. YSBR-057.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ZL. The first draft of the manuscript was written by ZL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. This work has no associated date.

Corresponding authors

Correspondence to Zheng-Chuan Wang or Zhen-Gang Zhu.

Appendix

Appendix

According to the BdG equation \(H \psi = E \psi =0\),

$$\begin{aligned} \begin{aligned} \left[ \frac{\left( -i \hbar \nabla \right) ^{2}}{2 m}-\mu \right] u +\frac{i \hbar }{p_{F}}\left\{ \Delta _0 e^{\frac{i e^{*} n \phi _0}{2 \pi \hbar }\theta }, \partial _{z}\right\} v=0, \end{aligned} \end{aligned}$$
(A1)

where \(u=v^{*}\). We first consider the second term of the equation:

$$\begin{aligned}{} & {} \frac{i \hbar }{p_{F}}\left\{ \Delta _0 e^{\frac{i 2e n \phi _0}{2 \pi \hbar }\theta }, \partial _{z}\right\} \nonumber \\{} & {} \quad = \frac{i \hbar }{p_{F}}\left[ \Delta _0 e^{i(1+\frac{ 2e n \phi _0}{2 \pi \hbar })\theta }\left( \frac{\partial }{\partial r}+\frac{i}{r}\frac{\partial }{\partial \theta }\right) +e^{i \theta }\right. \nonumber \\{} & {} \qquad \left. \left( \frac{\partial }{\partial r}+\frac{i}{r}\frac{\partial }{\partial \theta }\right) \Delta _0 e^{i\frac{ 2e n \phi _0}{2 \pi \hbar }\theta }\right] . \end{aligned}$$
(A2)

Since the wave function needs to satisfy the particle–hole symmetry, we can write the angular part of u as \(e^{i(\frac{1}{2} + \frac{ e n \phi _0}{2 \pi \hbar })\theta }\), and its conjugate of v is \(e^{-i(\frac{1}{2} + \frac{ e n \phi _0}{2 \pi \hbar })\theta }\). Thus, the second term in Eq. (A1) can be reduced to

$$\begin{aligned}&\frac{i \hbar }{p_{F}}\left\{ \Delta _0 e^{\frac{i 2e n \phi _0}{2 \pi \hbar }\theta }, \partial _{z}\right\} v \nonumber \\&\quad =\frac{i \hbar }{p_{F}}\left[ \Delta _0 e^{i(1+\frac{ 2e n \phi _0}{2 \pi \hbar })\theta }\left( 2\frac{\partial }{\partial r}+\frac{1}{r}\right) \right] e^{-i(\frac{1}{2} + \frac{ e n \phi _0}{2 \pi \hbar })\theta } v(r)\nonumber \\&\quad =\frac{i \hbar }{p_{F}}\left[ \Delta _0 e^{i(\frac{1}{2}+\frac{ e n \phi _0}{2 \pi \hbar })\theta }\left( 2\frac{\partial }{\partial r}+\frac{1}{r}\right) \right] v(r). \end{aligned}$$
(A3)

The first term in Eq. (A1) can also be written as an equation that only relates to the radial direction:

$$\begin{aligned} \begin{aligned}&\left[ \frac{\left( i \hbar \nabla \right) ^{2}}{2 m}-\mu \right] u \\&\quad = \left[ -\frac{\hbar ^2}{2m}(\frac{1}{r} \frac{\partial }{\partial r}+\frac{\partial ^2}{\partial r^2}+\frac{1}{r^2}\frac{\partial ^2}{\partial \theta ^2})- \mu \right] e^{i(\frac{1}{2} + \frac{ e n \phi _0}{2 \pi \hbar })\theta }u(r)\\&\quad = \left[ -\frac{\hbar ^{2}}{2 m}\frac{\partial ^2}{\partial r^2}-\frac{\hbar ^{2}}{2 m r}\frac{\partial }{\partial r}+\frac{e^{2} B^{2} r^{2}}{8 m}+\frac{\hbar ^{2}}{8 m r^{2}} -\frac{\hbar e B}{4 m} - \mu \right] \\&\qquad e^{i(\frac{1}{2} + \frac{ e n \phi _0}{2 \pi \hbar })\theta }u(r), \end{aligned} \end{aligned}$$
(A4)

and we can thus obtain Eq. (3):

$$\begin{aligned} \begin{aligned}&\left( \frac{\hbar ^{2}}{2 m}\frac{\partial ^2}{\partial r^2}+\frac{\hbar ^{2}}{2 m r}\frac{\partial }{\partial r}-\frac{e^{2} B^{2} r^{2}}{8 m}-\frac{\hbar ^{2}}{8 m r^{2}} +\frac{\hbar e B}{4 m}+ \mu \right) u(r) \\&\qquad -\left( \frac{2 i \hbar \Delta _{0}}{m v_{F}}\frac{\partial }{\partial r}+\frac{i \hbar \Delta _{0}}{m v_{F} r}\right) v(r)=0. \end{aligned} \end{aligned}$$
(A5)

The formula contains both real and imaginary coefficients and due to particle–hole symmetry, we add the constant coefficient \(e^{i\frac{\pi }{4}}\) and \(e^{-i\frac{\pi }{4}}\) in the wave function:

$$\begin{aligned} \begin{aligned}&\left( \frac{\hbar ^{2}}{2 m}\frac{\partial ^2}{\partial r^2}+\frac{\hbar ^{2}}{2 m r}\frac{\partial }{\partial r}-\frac{e^{2} B^{2} r^{2}}{8 m}-\frac{\hbar ^{2}}{8 m r^{2}} +\frac{\hbar e B}{4 m}+ \mu \right) \\&\quad e^{-i\frac{\pi }{4}} u(r) -\left( \frac{2 i \hbar \Delta _{0}}{m v_{F}}\frac{\partial }{\partial r}+\frac{i \hbar \Delta _{0}}{m v_{F} r}\right) e^{i\frac{\pi }{4}} u(r)\\&\quad =\left( \frac{\hbar ^{2}}{2 m}\frac{\partial ^2}{\partial r^2}+\frac{\hbar ^{2}}{2 m r}\frac{\partial }{\partial r}-\frac{e^{2} B^{2} r^{2}}{8 m}-\frac{\hbar ^{2}}{8 m r^{2}} +\frac{\hbar e B}{4 m}+ \mu \right) u(r)\\&\qquad +\left( \frac{2 \hbar \Delta _{0}}{m v_{F}}\frac{\partial }{\partial r}+\frac{ \hbar \Delta _{0}}{m v_{F} r}\right) u(r)=0. \end{aligned} \end{aligned}$$
(A6)

Because the wave function of MZM is localized at the edge of the superconductor around the radius \(R_{\text {in}}\) and \(R_{\text {out}}\), we approximate the variable r in the coefficient as a constant R [1]:

$$\begin{aligned} \begin{aligned}&\left( \frac{\hbar ^{2}}{2 m}\frac{\partial ^2}{\partial r^2}+\frac{\hbar ^{2}}{2 m R}\frac{\partial }{\partial r}-\frac{e^{2} B^{2} R^{2}}{8 m}-\frac{\hbar ^{2}}{8 m R^{2}} +\frac{\hbar e B}{4 m}+ \mu \right) u(r)\\&\quad +\left( \frac{2 \hbar \Delta _{0}}{m v_{F}}\frac{\partial }{\partial r}+\frac{ \hbar \Delta _{0}}{m v_{F} R}\right) u(r)=0, \end{aligned} \end{aligned}$$
(A7)

the wave function of Majorana Eq. (4) can be obtained by solving Eq. (A7).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, ZC. & Zhu, ZG. One-qubit Aharonov–Bhom phase gate constructed by Majorana zero-energy states. Eur. Phys. J. B 96, 90 (2023). https://doi.org/10.1140/epjb/s10051-023-00541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00541-y

Navigation