Skip to main content
Log in

A unified picture of the Bose–Einstein condensation in Fermi and Bose systems

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that all the Bose–Einstein (BE) condensations of Bose and Fermi systems can be formulated using the common ‘boson’ operator (valid below the BE condensation temperature \(T_{c}\)) with the coherent translational momentum \({{\varvec{q}}}=0\) (center-of-mass momentum in fermion system). The BE condensation is identified as the condensate of hopping bosons in Bose system and hopping fermion-pairs in Fermi system and the condensation energy is given by those average hopping energy times their condensate. We demonstrate that this scheme is actually working in all the BE condensations of strong-coupling fermion-pair system, weak-coupling Cooper-pair BCS system and the ideal Bose gas system. We find that the change of cuprate high-\(T_{c}\) superconductivity from the underdoped to the overdoped regime is the doping-induced crossover from strong- to weak-coupling BE condensation arising from the same origin of the attractive superexchange interaction. We also study the BE condensation in the large attractive \(-U\) Hubbard model and obtain a new BE-condensed ground state which is different from the one considered hitherto. We briefly comment on the more recently discovered BE condensations and their crossovers in the ultra-cold alkaline Fermi atom gases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a self-contained analytical theory paper and all the necessary data that were used are included in the manuscript.].

Notes

  1. We correct an error in the previous paper Ref. [24] for the estimation of the doped antiferromagnetic energy \(<H>_{AF}\) and take into account the superconducting phase instead of the insulating phase for the singlet-bond energy \(<H>_{SB}\).

References

  1. A. Einstein, Sitzungsberichte, Preuss. Akad. Wiss. Phys.-Math. Kl. (1924)

  2. A. Einstein, Sitzungsberichte. Preuss. Akad. Wiss. Phys.-Math. Kl. 3, 18 (1925)

    Google Scholar 

  3. P.T. Landsberg, Proc. Camb. Phil. Soc. 50, 65 (1954)

    ADS  Google Scholar 

  4. F. London, Nature 141, 643 (1938)

    ADS  Google Scholar 

  5. F. London, Phys. Rev. 54, 947 (1938)

    ADS  Google Scholar 

  6. F. London, Superfluids, vol. 2 (John-Wiley and Sons Inc., New York, 1954), pp.40-58–199-201

    Google Scholar 

  7. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    ADS  Google Scholar 

  8. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

    ADS  Google Scholar 

  9. A.J. Leggett, Modern trends in the theory of condensed matter, in Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland. ed. by M. Ch (Springer-Verlag, Berlin, 1980), pp.13–27

    Google Scholar 

  10. P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59(3/4), 195 (1985)

    ADS  Google Scholar 

  11. P.W. Anderson, W.F. Brinkman, The Helium Liquids: Proceedings of the 15th Scottish Universities Summer School in Physics (Academic Press, New York, 1975)

    Google Scholar 

  12. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

  13. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    ADS  Google Scholar 

  14. J. Orenstein, A.J. Mills, Science 288, 468 (2000)

    ADS  Google Scholar 

  15. T. Schneider, J.M. Singer, Phase Transition Approach to High Temperature Superconductivity (Imperial College Press, London, 2000)

    Google Scholar 

  16. P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates (Princeton University Press, Princeton, 1997)

    Google Scholar 

  17. C.A. Regal et al., Phys. Rev. Lett. 92, 040403 (2004)

    ADS  Google Scholar 

  18. M.W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004)

    ADS  Google Scholar 

  19. J. Kinast et al., Phys. Rev. Lett. 92, 150402 (2004)

    ADS  Google Scholar 

  20. T. Bourdel et al., Phys. Rev. Lett. 93, 050401 (2004)

    ADS  Google Scholar 

  21. C. Chin et al., Science 305, 1128 (2004)

    ADS  Google Scholar 

  22. G.B. Partridge et al., Phys. Rev. Lett. 95, 020404 (2005)

    ADS  Google Scholar 

  23. M.W. Zwierlein et al., Nature 435, 1047 (2005)

    ADS  Google Scholar 

  24. H. Kaga, Eur. Phys. J. B 95, 72 (2022)

    ADS  Google Scholar 

  25. J.R. Schrieffer, Theory of Superconductivity (W. A. Benjamin Inc Publishers, New York, 1964)

    MATH  Google Scholar 

  26. M. Tinkham, Introduction to Superconductivity (McGraw-Hill Inc, NewYork, 1996)

    Google Scholar 

  27. H. Takagi et al., Phys. Rev. B 40, 2254 (1989)

    ADS  Google Scholar 

  28. J.B. Torrance et al., Phys. Rev. B 40, 8872 (1989)

    ADS  Google Scholar 

  29. T. Nakano et al., Phys. Rev. B 48, 9689 (1993)

    ADS  Google Scholar 

  30. Y. Fukuzumi et al., Phys. Rev. Lett. 76, 684 (1996)

    ADS  Google Scholar 

  31. B. Loret et al., Phys. Rev. B 96, 094525 (2017)

    ADS  MathSciNet  Google Scholar 

  32. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    ADS  Google Scholar 

  33. M. Randeria et al., Phys. Rev. Lett. 62, 981 (1989)

    ADS  Google Scholar 

  34. M. Randeria et al., Phys. Rev. B 41, 327 (1990)

    ADS  Google Scholar 

  35. J.M. Singer et al., Phys. Rev. B 54, 1286 (1996)

    ADS  Google Scholar 

  36. J.M. Singer et al., Eur. Phys. J. B 2, 17 (1998)

    ADS  Google Scholar 

  37. J.M. Singer et al., Physica C 302, 183 (1998)

    ADS  Google Scholar 

  38. J.M. Singer et al., Eur. Phys. J. B 7, 37 (1999)

    ADS  Google Scholar 

  39. W. Zwerger, Lecture notes in physics, in The BCS-BEC Crossover and the Unitary Fermi Gas. (Springer, Berlin, 2011)

    Google Scholar 

  40. W. Ketterle, M.W. Zwierlein, Making, probing and understanding ultra-cold Fermi gases, in Ultra-Cold Fermi Gases, Proceedings of the International School of Physics, “Enrico Fermi’’, Course CLXIV, Varenna, 20-30 June 2006. ed. by M. Inguscio, W. Ketterle, C. Salomon (IOS Press, Amsterdam, 2008)

    Google Scholar 

  41. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80(3), 885–964 (2008)

    ADS  Google Scholar 

  42. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80(4), 1215–1274 (2008)

    ADS  Google Scholar 

  43. Q. Chen, J. Stajic, S. Tan, K. Levin, Phys. Rep. 412(1), 1–88 (2005)

    ADS  Google Scholar 

  44. M. Randeria, E. Taylor, Ann. Rev. Condens. Matter Phys. 5, 209–232 (2014)

    ADS  Google Scholar 

  45. M.W. Zwierlein et al., Phys. Rev. Lett. 94, 180401 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kaga.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaga, H. A unified picture of the Bose–Einstein condensation in Fermi and Bose systems. Eur. Phys. J. B 96, 71 (2023). https://doi.org/10.1140/epjb/s10051-023-00519-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00519-w

Navigation