Skip to main content
Log in

Temperature distribution in finite systems: application to the one-dimensional Ising chain

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermodynamic studies of small systems interacting with a finite environment display an interesting statistical behavior, similar to complex non-equilibrium systems. In both situations there are several applicable definitions of inverse temperature, either intrinsic or dependent of the statistical ensemble, and uncertainty in these quantities has to be taken into account. In this work we develop these concepts using as an example an isolated one-dimensional Ising chain subsystem that does not follow the canonical distribution. In the context of this example, we explicitly show that the theory of superstatistics cannot describe the behavior of the subsystem, and verify a recently reported relation between the ensemble and microcanonical inverse temperatures. Our results hint at a new framework for dealing with regions of microcanonical systems with positive heat capacity, which should be described by some new class of statistical ensembles outside superstatistics but still preserving the notion of temperature uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. C. Jarzynski, Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017)

    Google Scholar 

  2. J.M. Rubi, D. Bedeaux, S. Kjelstrup, Thermodynamics for single-molecule stretching experiments. J. Phys. Chem. B 110(25), 12733–12737 (2006). (PMID: 16800609)

    Google Scholar 

  3. S. Sinha, J. Samuel, Inequivalence of statistical ensembles in single molecule measurements. Phys. Rev. E 71, 021104 (2005)

    ADS  Google Scholar 

  4. J. Leo van Hemmen, A. Longtin. Temperature fluctuations for a system in contact with a heat bath. J. Stat. Phys. 153, 1132–1142

  5. S. Davis, G. Gutiérrez, Temperature is not an observable in superstatistics. Physica A Stat. Mech. Appl. 505, 864–870 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  6. F. Sattin, Superstatistics and temperature fluctuations. Phys. Lett. A 382(36), 2551–2554 (2018)

    ADS  MATH  Google Scholar 

  7. X. Campi, H. Krivine, E. Plagnol, N. Sator, Partial energy fluctuations and negative heat capacities. Phys. Rev. C 71, 041601 (2005)

    ADS  Google Scholar 

  8. C. Bustamante, J. Liphardt, F. Ritort, The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43–48 (2005)

    Google Scholar 

  9. T.L. Hill, R.V. Chamberlin, Extension of the thermodynamics of small systems to open metastable states: an example. Proc. Natl. Acad. Sci. 95, 12779–12782 (1998)

    ADS  Google Scholar 

  10. J.D. Ramshaw, Maximum entropy and constraints in composite systems. Phys. Rev. E 105, 024138 (2022)

    ADS  MathSciNet  Google Scholar 

  11. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  12. G.B. Bagci, T. Oikonomou, Tsallis power laws and finite baths with negative heat capacity. Phys. Rev. E 88, 42126 (2013)

    ADS  Google Scholar 

  13. W.S. Chung, H. Hassanabadi, Statistical physics when the heat bath is large but finite. Physica A Stat. Mech. Appl. 532, 121720 (2019)

    MathSciNet  MATH  Google Scholar 

  14. R. de Miguel, J.M. Rubi, Finite systems in a heat bath: spectrum perturbations and thermodynamics. J. Phys. Chem. B 120(34), 9180–9186 (2016)

    Google Scholar 

  15. M. Campisi, P. Talkner, P. Hänggi, Finite bath fluctuation theorem. Phys. Rev. E 80, 031145 (2009)

    ADS  Google Scholar 

  16. Ramandeep S. Johal, Antoni Planes, Eduard Vives, Statistical mechanics in the extended Gaussian ensemble. Phys. Rev. E 68, 056113 (2003)

    ADS  Google Scholar 

  17. C. Beck, E.G.D. Cohen, Superstatistics. Physica A Stat. Mech. Appl. 322, 267–275 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  18. C. Beck, Superstatistics: theory and applications. Continuum Mech. Thermodyn. 16, 293–304 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  19. H. Hasegawa, Classical small systems coupled to finite baths. Phys. Rev. E 83, 021104 (2011)

    ADS  Google Scholar 

  20. P.D. Dixit, A maximum entropy thermodynamics of small systems. J. Phys. Chem. 138, 184111 (2013)

    Google Scholar 

  21. P.D. Dixit, Detecting temperature fluctuations at equillibrium. Phys. Chem. Chem. Phys. 17, 13000–13005 (2015)

    Google Scholar 

  22. S. Davis, Conditional maximum entropy and superstatistics. J. Phys. A Math. Theor. 53, 445006 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  23. L. Herron, P.D. Dixit, Thermal statistics of small magnets. J. Stat. Mech. Theory Exp. 2021(3), 033207 (2021)

    MATH  Google Scholar 

  24. P.K. Ilin, G.V. Koval, A.M. Savchenko, A non-Gibbs distribution in the Ising model. Moscow Univ. Phys. 75, 415–419 (2020)

    Google Scholar 

  25. S. Davis, Fluctuating temperature outside superstatistics: thermodynamics of small systems. Physica A Stat. Mech. Appl. 589, 126665 (2022)

    MathSciNet  MATH  Google Scholar 

  26. S. Davis, A classification of nonequilibrium steady states based on temperature correlations. Physica A Stat. Mech. Appl. 608, 128249 (2022)

    MathSciNet  MATH  Google Scholar 

  27. S. Davis, On the possible distributions of temperature in nonequilibrium steady states. J. Phys. A Math. Theor. 53, 045004 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  28. E.T. Jaynes, Probability Theory: The Logic Of Science (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  29. H. Loguercio, S. Davis, Inverse temperature in superstatistics. J. Phys. Conf. Ser. 720, 012007 (2016)

    Google Scholar 

  30. S. Davis, G. Avaria, B. Bora, J. Jain, J. Moreno, C. Pavez, L. Soto, Single-particle velocity distributions of collisionless, steady-state plasmas must follow superstatistics. Phys. Rev. E 100, 023205 (2019)

    ADS  Google Scholar 

  31. H.H. Rugh, Dynamical approach to temperature. Phys. Rev. Lett. 78(5), 772–774 (1997)

    ADS  MathSciNet  Google Scholar 

  32. G. Rickayzen, J.G. Powles, Temperature in the classical microcanonical ensemble. J. Chem. Phys. 114(9), 4333–4334 (2001)

    ADS  Google Scholar 

  33. G. Palma, G. Gutiérrez, S. Davis, Ensemble-free configurational temperature for spin systems. Phys. Rev. E 94, 062113 (2016)

    ADS  Google Scholar 

  34. U.A. Salian, Microcanonical temperature and “heat capacity’’ computation of Lennard-Jones clusters under isoergic molecular dynamics simulation. J. Chem. Phys. 108, 6342–6346 (1998)

    ADS  Google Scholar 

  35. M. Pleimling, H. Behringer, Microcanonical analysis of small systems. Phase Transit. 78, 787–797 (2005)

    Google Scholar 

  36. G.P. Morriss, L. Rondoni, Definition of temperature in equilibrium and nonequilibrium systems. Phys. Rev. E 59, R5–R8 (1999)

    ADS  Google Scholar 

  37. P. Buonsante, R. Franzosi, A. Smerzi, Phase transitions at high energy vindicate negative microcanonical temperature. Phys. Rev. E 95, 052135 (2017)

    ADS  Google Scholar 

  38. G. Gutiérrez, S. Davis, G. Palma, Configurational temperature in constrained systems: the case of spin dynamics. J. Phys. A Math. Theor. 51(45), 455003 (2018)

    ADS  MathSciNet  Google Scholar 

  39. K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering: A Comprehensive Guide (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  40. L. Velazquez, S. Curilef, A thermodynamic fluctuation relation for temperature and energy. J. Phys. A Math. Theor. 42, 095006 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  41. W. Thirring, Systems with negative specific heat. Z. Physik 235, 339–352 (1970)

  42. A. Campa, T. Dauxois, S. Ruffo, Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009)

    ADS  MathSciNet  Google Scholar 

  43. I.H. Umirzakov, van der Waals type loop in microcanonical caloric curves of finite systems. Phys. Rev. E 60, 7550–7553 (1999)

    ADS  Google Scholar 

  44. P. Chomaz, F. Gulminelli, Phase Transitions in Finite Systems (Springer, Berlin, 2002)

    MATH  Google Scholar 

  45. M. Eryürek, M.H. Güven, Negative heat capacity of Ar\(_{55}\) cluster. Physica A 377, 514–522 (2007)

    ADS  Google Scholar 

  46. M. Eryürek, M.H. Güven, Peculiar thermodynamic properties of LJ\(_n\) (\(n\)=39-55) clusters. Eur. Phys. J. D 48, 221–228 (2008)

    ADS  Google Scholar 

  47. I. Latella, A. Perez-Madrid, A. Campa, L. Cassetti, S. Ruffo, Thermodynamics of nonadditive systems. Phys. Rev. Lett. 114, 230601 (2015)

    ADS  Google Scholar 

  48. I. Latella, A. Perez-Madrid, A. Campa, L. Cassetti, S. Ruffo, Long-range interacting systems in the unconstrained ensemble. Phys. Rev. E. 95, 012140 (2017)

    ADS  Google Scholar 

  49. M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmüler, B. von Issendorff, H. Haberland, Negative heat capacity for a cluster of 147 sodium atoms. Phys. Rev. Lett. 86, 1191 (2000)

    ADS  Google Scholar 

  50. M.A. Carignano, I. Gladich, Negative heat capacity of small systems in the microcanonical ensemble. EPL 90, 63001 (2010)

    ADS  Google Scholar 

  51. F. Moreno, S. Davis, C. Loyola, J. Peralta, Ordered metastable states in the Potts model and their connection with the superheated solid state. Physica A 509, 361–368 (2018)

    ADS  Google Scholar 

  52. C. Farías, S. Davis, Multiple metastable states in an off-lattice Potts model. Physica A 581, 126215 (2021)

    MATH  Google Scholar 

  53. A.L. Coryn, Bailer-Jones (A primer for Physical Scientists. Cambridge University Press, Oxford, Practical Bayesian Inference, 2017)

  54. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from ANID FONDECYT Regular 1220651. CF also acknowledges Beca ANID Doctorado Nacional/(2021) - 21210658.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Constanza Farías.

Appendix A: Derivation of the ensemble temperature of the Ising chain

Appendix A: Derivation of the ensemble temperature of the Ising chain

In order to show the step-by-step computation of how the ensemble inverse temperature \(\beta _F\) was obtained, consider the following definitions which relate the original parameters with the energy of the system E and the sub-system \(E_s\), that is,

$$\begin{aligned} \frac{M}{N} = \frac{1}{2}+\frac{E}{2N}, \end{aligned}$$
(A1)
$$\begin{aligned} K = \frac{1}{2}\left( \gamma N - 1 + E_s\right) , \end{aligned}$$
(A2)

and \(L=\gamma N\). We start with the quantity \(\omega _n\) of Ref. [24], which in our case corresponds to the ensemble function as in Eq. 27.

The next step was to take the logarithmic derivative of \(\rho \) in Eq. 27, with respect to the sub-system energy,

$$\begin{aligned} \frac{\partial \ln \rho (E_s)}{\partial E_s}&= \frac{1}{2}\Bigg [\psi \left( \frac{1}{2}\big (3+E-E_s+ N(1-\gamma )\big )\right) \nonumber \\&\quad - \psi \left( \frac{1}{2}\big (3-E+E_s+ N(1-\gamma )\big )\right) \Bigg ] \end{aligned}$$
(A3)

Applying the definition of \(\beta _F\) and simplifying, we obtained the last expression in terms of the harmonic number \(H_n\), finally we obtained a simplified expression for \(\beta _{F}\)

$$\begin{aligned} \beta _{F} =&\frac{1}{2}\ln {\Bigg [\frac{N(1-\gamma )+(E_s-E)}{N(1-\gamma )+(E-E_s)}\Bigg ]}, \end{aligned}$$
(A4)

that, when cancelling N and using \(\epsilon _s \mathrel {\mathop :}=E_s/N\), \(\epsilon \mathrel {\mathop :}=E/N\) reduces to Eq. 31.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farías, C., Davis, S. Temperature distribution in finite systems: application to the one-dimensional Ising chain. Eur. Phys. J. B 96, 39 (2023). https://doi.org/10.1140/epjb/s10051-023-00509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00509-y

Navigation