Skip to main content
Log in

Prediction of electronic structure and thermoelectric performance of bulk and monolayer BiSbSeTe2

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermoelectric materials have many advantages, such as long service life, small size, light weight and so on. High efficient thermoelectric conversion materials are used in navigation satellites and play an important role in extending the use of navigation satellites. So far, it is still a considerable challenge to develop thermoelectric thin films with high TE performance and environmental friendliness for practical applications. In this work, The thermoelectric properties of the bulk and monolayer BiSbSeTe2 are studied. The band gap of the bulk and monolayer BiSbSeTe2 can be improved by TB-mBJ. The lower maximum frequency of the acoustic mode and the heavy elements together lead to the lower lattice thermal conductivity. Due to the low lattice thermal conductivity of BiSbSeTe2, the ZT of the monolayer BiSbSeTe2 has a maximum value. The ZT of a monolayer BiSbSeTe2 calculated by generalized gradient approximation (GGA) with |n|= 1019 cm−3 is 1.1 when the temperature is close to 1000 K. This also confirms that the best ZT always appears at around 1019 cm−3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: the data that support the findings of this study are available from the corresponding author, upon reasonable request.]

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    ADS  Google Scholar 

  2. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)

    ADS  Google Scholar 

  3. T. Dahal, Q. Jie, Y.C. Lan, C.F. Guo, Z.F. Ren, Phys. Chem. Chem. Phys. 16, 18170 (2014)

    Google Scholar 

  4. M.M. Mallick, S. Vitta, Inorg. Chem. 56, 5827 (2017)

    Google Scholar 

  5. S.D. Chen, Y. He, A. Zong, Y. Zhang, M. Hashimoto, B.B. Zhang, S.H. Yao, Y.B. Chen, J. Zhou, Y.F. Chen, S.K. Mo, Z. Hussain, D.H. Lu, Z.X. Shen, Phys. Rev. B 96, 081109 (2017)

    ADS  Google Scholar 

  6. J. Vikram, J. Kangsabanik, A. Enamullaha, A. Alam, J. Mater. Chem. A 5, 6131 (2017)

    Google Scholar 

  7. B. Xu, J. Zhang, X.F. Li, G.Q. Yu, S.S. Ma, Y.S. Wang, L. Yi, Mater. Res. Innov. 18, 104 (2014)

    Google Scholar 

  8. B. Xu, C.G. Long, Y.S. Wang, L. Yi, Chem. Phys. Lett. 529, 45 (2012)

    ADS  Google Scholar 

  9. J. Shuai, Y.M. Wang, H.S. Kim, Z.H. Liu, J.Y. Sun, S. Chen, J.H. Sui, Z.F. Ren, Acta Mater. 93, 187 (2015)

    ADS  Google Scholar 

  10. F. Sui, H. He, S. Bobev, J. Zhao, F.E. Osterloh, S.M. Kauzlarich, Chem. Mater. 27, 2812 (2015)

    Google Scholar 

  11. X.L. Yan, M. Ikeda, L. Zhang, E. Bauer, P. Rogl, G. Giester, A. Prokofieva, S. Paschen, J. Mater. Chem. A 6, 1727 (2018)

    Google Scholar 

  12. M. Tan, Y.M. Hao, D. Yuan, J.Y. Chen, Appl. Surf. Sci. 443, 11 (2018)

    ADS  Google Scholar 

  13. H. Choi, S.J. Kim, Y.J. Kim, J.H. We, M.W. Oh, B.J. Cho, J. Mater. Chem. C 5, 8559 (2017)

    Google Scholar 

  14. R.J. Mehta, Y. Zhang, H. Zhu, D.S. Parker, M. Belley, D.J. Singh, R. Ramprasad, T.B. Tasciuc, G. Ramanath, Nano Lett. 12, 4523 (2012)

    ADS  Google Scholar 

  15. A. Shafique, A. Samad, Y.H. Shin, Phys. Chem. Chem. Phys. 19, 20677 (2017)

    Google Scholar 

  16. D. Qin, X.J. Ge, G.Q. Ding, G.Y. Gao, J.T. Lv, Strain-induced thermoelectric performance enhancement of monolayer ZrSe2. RSC Adv. 7, 47243 (2017)

    ADS  Google Scholar 

  17. G.Q. Ding, G.Y. Gao, Z.S. Huang, W.X. Zhang, K.L. Yao, Nanotechnology 27, 375703 (2016)

    Google Scholar 

  18. Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, X. Duan, Science 357, 788 (2017)

    Google Scholar 

  19. G.Q. Ding, C. Wang, G.Y. Gao, K.L. Yao, C.C. Dun, C.B. Feng, D.F. Li, G. Zhang, Nanoscale 10, 7077 (2018)

    Google Scholar 

  20. B. Xu, J. Zhang, G.Q. Yu, S.S. Ma, Y.S. Wang, Y.X. Wang, J. Appl. Phys. 124, 165104 (2018)

    ADS  Google Scholar 

  21. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    ADS  Google Scholar 

  22. G. Zhou, D. Wang, Sci. Rep. 5, 8099 (2015)

    ADS  Google Scholar 

  23. K. Termentzidis, O. Pokropyvnyy, M. Woda, S.Y. Xiong, Y. Chumakov, P. Cortona, S. Volz, J. Appl. Phys. 113, 013506 (2013)

    ADS  Google Scholar 

  24. J.H. Dycus, R.M. White, J.M. Pierce, R. Venkatasubramanian, J.M. LeBeau, Appl. Phys. Lett. 102, 081601 (2013)

    ADS  Google Scholar 

  25. C. Kim, D.H. Kim, H. Kim, J.S. Chung, A.C.S. Appl, Mater. Inter. 4, 2949 (2012)

    Google Scholar 

  26. G.Q. Zhang, H.Y. Fang, H.R. Yang, L.A. Jauregui, Y.P. Chen, Y. Wu, Nano Lett. 12, 3627 (2012)

    ADS  Google Scholar 

  27. J. Lee, J. Kim, W. Moon, A. Berger, J. Lee, J. Phys. Chem. C 116, 19512 (2012)

    Google Scholar 

  28. J.H. Wea, S.J. Kima, G.S. Kimb, B.J. Choa, J. Alloys Compd. 552, 107 (2013)

    Google Scholar 

  29. K.C. Lukas, W.S. Liu, Z.F. Ren, C.P. Opeil, J. Appl. Phys. 112, 054509 (2012)

    ADS  Google Scholar 

  30. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    ADS  Google Scholar 

  31. H. Zou, D.M. Rowe, S.G.K. Williams, Thin Solid Films 408, 270 (2002)

    ADS  Google Scholar 

  32. W. Shi, J. Yu, H. Wang, H. Zhang, J. Am. Chem. Soc. 128, 16490 (2006)

    Google Scholar 

  33. W. Shi, L. Zhou, S. Song, J. Yang, H. Zhang, Adv. Mater. 20, 1892 (2008)

    Google Scholar 

  34. M.T. Pettes, J. Maassen, I. Jo, M.S. Lundstrom, L. Shi, Nano Lett. 13, 5316 (2013)

    ADS  Google Scholar 

  35. P. Ghaemi, R.S.K. Mong, J.E. Moore, Phys. Rev. Lett. 105, 166603 (2010)

    ADS  Google Scholar 

  36. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, Science 320, 634 (2008)

    ADS  Google Scholar 

  37. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Lett. 8, 2580 (2008)

    ADS  Google Scholar 

  38. Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419 (2009)

    ADS  Google Scholar 

  39. H.L. Shi, D. Parker, M.-H. Du, D.J. Singh, Phys. Rev. Appl. 3, 014004 (2015)

    ADS  Google Scholar 

  40. P. Devender, P. Gehring, A. Gaul, A. Hoyer, K. Vaklinova, R.J. Mehta, M. Burghad, T.B. Tasciuc, D.J. Singh, K. Kern, G. Ramanath, Adv. Mater. 28, 6436 (2016)

    Google Scholar 

  41. Z.Z. Zhou, H.J. Liu, D.D. Fan, J. Phys. D Appl. Phys. 51, 315501 (2018)

    Google Scholar 

  42. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Computer code WIEN2K, improved, updated Unix version of the original P. Blaha, K. Schwarz, P. Sorantin, S. B. Trickey. Comput. Phys. Commun. 59, 399 (1990)

    ADS  Google Scholar 

  43. P.B. Allen, Boltzmann theory, resistivity of metals. In Quantum Theory of Real Materials, ed. by J. R. Chelikowsky, S. G. Louie (Klüwer, Boston, 1996). p. 219.

  44. K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    ADS  Google Scholar 

  45. A. Pfitzner, Z. Krist, Cryst. Mater. 209, 685 (1994)

    Google Scholar 

  46. A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)

    ADS  Google Scholar 

  47. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747 (2014)

    ADS  Google Scholar 

  48. T.Q. Zhao, Y.J. Sun, Z.G. Shuai, D. Wang, Chem. Mater. 29, 6261 (2017)

    Google Scholar 

  49. G.Q. Ding, G.Y. Gao, L. Yu, Y. Ni, K.L. Yao, J. Appl. Phys. 119, 025105 (2016)

    ADS  Google Scholar 

  50. G.Q. Ding, J.F. Chen, K. Yao, G.Y. Gao, New J. Phys. 19, 073036 (2017)

    ADS  Google Scholar 

  51. G.P. Li, G.Q. Ding, G.Y. Gao, J. Phys. Condens. Matter 29, 015001 (2017)

    ADS  Google Scholar 

  52. S. Datta, M.M. Kabir, T. Saha-Dasgupta, Phys. Rev. B 58, 129 (2011)

    Google Scholar 

  53. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  54. B. Xu, L.G. Song, G.H. Peng, J. Zhang, Y.X. Wang, Phys. Lett. A 383, 125864 (2019)

    Google Scholar 

  55. G.Q. Ding, J. Carrete, W. Li, G.Y. Gao, K. Yao, Appl. Phys. Lett. 108, 233902 (2016)

    ADS  Google Scholar 

  56. B. Wang, X.H. Niu, Y.X. Ouyang, Q.H. Zhou, J.L. Wang, J. Phys. Chem. Lett. 9, 487 (2018)

    Google Scholar 

  57. B.L. Huang, M. Kaviany, Phys. Rev. B 77, 125209 (2008)

    ADS  Google Scholar 

  58. J. Zhang, H.J. Liu, L. Cheng, J. Wei, J. Shi, X.F. Tang, C. Uher, J. Appl. Phys. 116, 023706 (2014)

    ADS  Google Scholar 

  59. S.N. Zhang, T.J. Zhu, S.H. Yang, C. Yu, X.B. Zhao, Acta Mater. 58, 4160 (2010)

    ADS  Google Scholar 

  60. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    ADS  Google Scholar 

  61. H.H. Huang, G. Xing, X. Fan, D.J. Singh, W.T. Zheng, J. Mater. Chem. C 7, 5094 (2019)

    Google Scholar 

  62. S.S. Naghavi, J. He, Y. Xia, C. Wolverton, Chem. Mater. 30, 5639 (2018)

    Google Scholar 

  63. R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, L. Yang, Nano Lett. 14, 6393 (2014)

    ADS  Google Scholar 

  64. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)

    ADS  Google Scholar 

  65. C. Wang, S.S. Wei, G.Y. Gao, A.C.S. Appl, Nano Mater. 2, 4061 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation under Grant no.: 41571346.

Author information

Authors and Affiliations

Authors

Contributions

DC carried out the DFT modeling and calculations, prepared the manuscript. DC and JC conceptualized the study and reviewed the manuscript. DC and JC contributed to the discussion of the whole paper.

Corresponding author

Correspondence to Jiannong Cao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Cao, J. Prediction of electronic structure and thermoelectric performance of bulk and monolayer BiSbSeTe2. Eur. Phys. J. B 96, 33 (2023). https://doi.org/10.1140/epjb/s10051-023-00498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00498-y

Navigation