Skip to main content
Log in

Rogue waves on the periodic background in the extended mKdV equation

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We construct new exact solutions of the extended mKdV (emKdV) equation. The exact solutions are obtained by nonlinearization of spectral problem associated with the travelling periodic waves and using the one-fold, two-fold Darboux transformations. We consider the dnoidal and cnoidal travelling periodic waves of the emKdV equation. Since the dnoidal travelling periodic wave is modulationally stable, the algebraic solitons propagating on dnoidal wave background. However, since the cnoidal travelling periodic wave is modulationally unstable, the rogue waves generated on the cnoidal wave background.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:The data generated during the current study will be made available at reasonable request.]

References

  1. W.X. Ma, Reduced non-local integrable NLS hierarchies by pairs of local and non-local constraints. Int. J. Appl. Comput. Math. 8, 206 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. W.X. Ma, A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Modern Phys. Lett. B 36, 2250094 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.S. Wang, L. Xu, Z. Xuan, The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation. J. Nonlinear Sci. 32, 3 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. C.W. Cao, X.G. Geng, Classical integrable systems generated through nonlinearization of eigenvalue problems. Nonlinear Phys. 68–78 (1989)

  5. D.W. Zhuang, Y.Q. Lin, Nonlinearization of the lax pair for the KdV equation and integrable Hamiltonian systems. Nonlinear Phys. 92–96 (1989)

  6. C.W. Cao, Nonlinearization of the Lax system for AKNS hiearchy. Sci. China Ser. A 33, 528–536 (1990)

    MathSciNet  MATH  Google Scholar 

  7. T. Grava, A. Minakov, On the long-time asymptotic behavior of the modified Korteweg-de Vries equation with step-like initial data. SIAM J. Math. Anal. 52, 5892–5993 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. D.S. Wang, B.L. Guo, X.L. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266, 5209–5253 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. W.X. Ma, Soliton solutions by means of Hirota bilinear forms. Partial Differ. Equ. Appl. Math. 5, 100220 (2022)

    Article  Google Scholar 

  10. W.X. Ma, Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differ. Equ. Appl. Math. 4, 100190 (2021)

    Article  Google Scholar 

  11. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  12. M. Shats, H. Punzmann, H. Xia, Capillary rogue waves. Phys. Rev. Lett. 104, 104503 (2010)

    Article  ADS  Google Scholar 

  13. D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MATH  Google Scholar 

  14. J.B. Chen, D.E. Pelinovsky, Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955–1980 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.B. Chen, D.E. Pelinovsky, Rogue periodic waves in the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474, 20170814 (2018)

    Article  ADS  MATH  Google Scholar 

  16. J.B. Chen, D.E. Pelinovsky, R.E. White, Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability. Phys. D 405, 132378 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.B. Chen, D.E. Pelinovsky, Periodic travelling waves of the Modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29, 2797–2843 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. W.Q. Peng, S.F. Tian, X.B. Wang, T.T. Zhang, Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Gao, H.Q. Zhang, Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background. Nonlinear Dyn. 101, 1159–1168 (2020)

    Article  Google Scholar 

  20. J.B. Chen, D.E. Pelinovsky, J. Upsal, Modulational instability of periodic standing waves in the derivative NLS equation. J. Nonlinear Sci. 31, 58 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J.B. Chen, D.E. Pelinovsky, Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. Phys. Rev. E 103, 062206 (2021)

    Article  ADS  Google Scholar 

  22. R.M. Li, X.G. Geng, Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.E. Pelinovsky, R.E. White, Localized structures on librational and rotational travelling waves in the sine-Gordon equation. Proc. R. Soc. A 476, 20200490 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. B.F. Feng, L.M. Ling, D.A. Takahashi, Multi-breathers and high order rogue waves for the nonlinear Schrödinger equation on the elliptic function background. Stud. Appl. Math. 144, 46–101 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. X.G. Geng, R.M. Li, B. Xue, A vector Geng-Li model: New nonlinear phenomena and breathers on periodic background waves. Phys. D 434, 133270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.M. Li, X.G. Geng, Periodic-background solutions for the Yajima-Oikawa long-wave-short-wave equation. Nonlinear Dyn. 109, 1053–1067 (2022)

    Article  Google Scholar 

  27. J.C. Bronski, M.A. Johnson, T. Kapitula, An index theorem for the stability of periodic travelling waves of Korteweg-de Vries type. Proc. Roy. Soc. Edinburgh Sect. A 141, 1141–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Deconinck, M. Nivala, The stability analysis of the periodic traveling wave solutions of the mKdV equation. Stud. Appl. Math. 126, 17–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.B. Chen, D.E. Pelinovsky, Periodic waves in the discrete mKdV equation: modulational instability and rogue waves. Phys. D 445, 133652 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.Q. Zhang, X. Gao, Z.J. Pei, F. Chen, Rogue periodic waves in the fifth-order Ito equation. Appl. Math. Lett. 107, 106464 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Chen, H.Q. Zhang, Rogue waves on the periodic background in the higher-order modified Korteweg-de Vries equation. Modern Phys. Lett. B 35, 2150081 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. V.M. Vassilev, P.A. Djondjorov, I.M. Mladenov, Cylindrical equilibrium shapes of fluid membranes. J. Phys. A: Math. Theor. 41, 435201 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. H.Q. Zhang, F. Chen, Z.J. Pei, Rogue waves of the fifth-order Ito equation on the general periodic travelling wave solutions background. Nonlinear Dyn. 103, 1023–1033 (2021)

    Article  Google Scholar 

  34. F. Chen, H.Q. Zhang, Periodic travelling waves and rogue waves for the higher-order modified Korteweg-de Vries equation. Commun. Nonlinear Sci. Numer. Simulat. 97, 105767 (2021)

  35. B. Deconinck, B.L. Segal, The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Grimshaw, D. Pelinovsky, E. Pelinovsky, T. Talipova, Wave group dynamics in weakly nonlinear long-wave models. Phys. D 159, 35–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. E.J. Parkes, The modulation of weakly non-linear dispersive waves near the marginal state of instability. J. Phys. A: Math. Gen. 20, 2025 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author declares that no funds were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanpei Zhen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, Y. Rogue waves on the periodic background in the extended mKdV equation. Eur. Phys. J. B 96, 20 (2023). https://doi.org/10.1140/epjb/s10051-023-00489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00489-z

Navigation