Skip to main content
Log in

Thermodynamic quantities of independent harmonic oscillators in microcanonical and canonical ensembles in the Tsallis statistics

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the energy and the entropies of N independent harmonic oscillators in the microcanonical and the canonical ensembles in the Tsallis classical and the Tsallis quantum statistics of entropic parameter q, where N is the number of the oscillators and the value of q is larger than one. The energy and the entropies are represented with the physical temperature, and the well-known expressions are obtained for the energy and the Rényi entropy. The difference between the microcanonical and the canonical ensembles is the existence of the condition for N and q in the canonical ensemble: \(N(q-1)<1\). The condition does not appear in the microcanonical ensemble.The entropies are q-dependent in the canonical ensemble, and are not q-dependent in the microcanonical ensemble. For \(N(q-1)<1\), this difference in entropy is quite small, and the entropy in the canonical ensemble does not differ from the entropy in the microcanonical ensemble substantially.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This study is theoretical, and the graphs were drawn with the equations given in this paper.].

References

  1. C. Tsallis, Introduction to nonextensive statistical mechanics (Springer Science + Business Media, LLC, 2010)

  2. M. Ishihara, Thermodynamics of the independent harmonic oscillators with different frequencies in the Tsallis statistics in the high physical temperature approximation. Eur. Phys. J. B. 95, 53 (2022)

    Article  ADS  Google Scholar 

  3. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  4. A.S. Parvan, Rényi statistics in equilibrium mechanics. Phys. Lett. A 374, 1951 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. S. Kalyana Rama, Tsallis statistics: averages and a physical interpretation of the Lagrange multiplier \(\beta \), Phys. Lett. A 276, 103 (2000)

  6. S. Abe, S. Martinez, F. Pennini, A. Plastino, Nonextensive thermodynamic relations. Phys. Lett. A 281, 126 (2001)

    Article  MATH  ADS  Google Scholar 

  7. S. Abe, Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Rényi-entropy-based theory. Physica A 300, 417 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. H.H. Aragão-Rêgo, D.J. Soares, L.S. Lucena, L.R. da Silva, E.K. Lenzi, and Kwok Sau Fa, Bose–Einstein and Fermi–Dirac distributions in nonextensive Tsallis statistics: an exact study. Physica A 317, 199 (2003)

  9. E. Ruthotto, Physical temperature and the meaning of the \(q\) parameter in Tsallis statistics. arXiv:cond-mat/0310413

  10. R. Toral, On the definition of physical temperature and pressure for nonextensive thermodynamics. Physica A 317, 209 (2003)

    Article  MATH  ADS  Google Scholar 

  11. H. Suyari, The unique non self-referential \(q\)-canonical distribution and the physical temperature derived from the maximum entropy principle in Tsallis statistics. Prog. Theor. Phys. Suppl. 162, 79 (2006)

    Article  MATH  ADS  Google Scholar 

  12. M. Ishihara, Phase transition for the system of finite volume in the \(\phi ^4\) theory in the Tsallis nonextensive statistics. Int. J. Mod. Phys. A 33, 1850067 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. M. Ishihara, Momentum distribution and correlation for a free scalar field in the Tsallis nonextensive statistics based on density operator. Eur. Phys. J. A 54, 164 (2018)

    Article  ADS  Google Scholar 

  14. M. Ishihara, Thermodynamic relations and fluctuations in the Tsallis statistics. arXiv:2104.11427v2

  15. S. Abe, Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. Phys. Rev. E 66, 046134 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  16. L.G. Moyano, C. Tsallis, M. Gell-Mann, Numerical indications of a \(q\)-generalized central limit theorem. Europhys. Lett. 73, 813 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Vives, A. Plane, Is Tsallis thermodynamics nonextensive? Phys. Rev. Lett. 88, 020601 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Boumali, The one-dimensional thermal properties for the relativistic harmonic oscillators. arXiv:1409.6205v1

  19. A. Boer, Study of second order phase transitions in the 2D Ising model using Tsallis statistics. Bull. Transilvania Univ. Braşov 3(52), 209 (2010)

  20. S.N.M. Ruijsenaars, On Barnes multiple zeta and gamma functions. Adv. Math. 156, 107 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Kirsten, “Basic zeta functions and some applications in physics”, from A Window into Zeta and Modular Physics, Editors K. Kirsten and F. Williams, MSRI Pub. 57, 101, Cambridge University Press, Cambridge (2010)

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ishihara.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Appendix A: Hurwitz zeta function and Barnes zeta function

Appendix A: Hurwitz zeta function and Barnes zeta function

In this appendix, we give the approximate expressions of Hurwitz and Barnes zeta functions. The derivation is also given in the appendices A and B of the reference [2] .

The Hurwitz zeta function \(\zeta _{\textrm{H}}\) is defined by

$$\begin{aligned} \zeta _{\textrm{H}}(s, \alpha ) = \sum _{n=0}^{\infty } \frac{1}{(\alpha +n)^s}. \end{aligned}$$
(A.1)

In this appendix, we treat the case of \(s>1\) and \(\alpha >0\).

Applying the Euler–Maclaurin formula, we have

$$\begin{aligned} \zeta _{\textrm{H}}(1+z, \alpha )&= \frac{1}{z\alpha ^z} + \frac{1}{2\alpha ^{1+z}} \nonumber \\&\quad + \sum _{k=1}^{M-1} \frac{(-1)^{k+1} B_{k+1}}{(k+1)!} \frac{\Gamma (z+k+1)}{\Gamma (z+1)} \frac{1}{\alpha ^{z+k+1}} \nonumber \\&\quad - \frac{(-1)^M}{M!} \int _0^{\infty } \textrm{d}x B_M(x-[x]) f^{(M)}(x)\nonumber \\&\quad (z>0, \alpha > 0) , \end{aligned}$$
(A.2)

where \(B_k\) is Bernoulli number. The Hurwitz zeta function can be expressed in the other forms [18]. From Eq. (A.2), we find that \(\zeta _{\textrm{H}}(1+z, \alpha )\) for \(\alpha \gg 1\) behaves as

$$\begin{aligned} \zeta _{\textrm{H}}(1+z,\alpha ) \sim \frac{1}{z \alpha ^{z}}. \end{aligned}$$
(A.3)

The Barnes zeta function [20, 21] is defined by

$$\begin{aligned}&\zeta _{\textrm{B}}(s,\alpha |\mathbf {\omega }_N) = \sum _{n_1,\ldots ,n_N=0}^{\infty } \frac{1}{(\alpha + \omega _1 n_1 + \ldots + \omega _N n_N)^s} \nonumber \\&\mathbf {\omega }_N = (\omega _1, \omega _2, \ldots , \omega _N), \end{aligned}$$
(A.4)

where \(s>N\), \(\alpha > 0\), and \(\omega _j > 0\). The Barnes zeta function for sufficiently large \(\alpha \) has the following relation

$$\begin{aligned} \zeta _{\textrm{B}}(1+z,\alpha |\mathbf {\omega }_N) \sim \frac{1}{z \omega _N} \zeta _{\textrm{B}}(z, \alpha |\mathbf {\omega }_{N-1}) . \end{aligned}$$
(A.5)

This relation is derived with Eq. (A.3). Using the recurrence relation, Eq. (A.5), we have the following approximate expression of \(\zeta _{\textrm{B}}\) for \(\alpha \gg 1\):

$$\begin{aligned} \zeta _{\textrm{B}}(1+z, \alpha |\mathbf {\omega }_N)&\sim \frac{1}{\Bigg (\displaystyle \prod _{j=0}^{N-1} (z-j)\Bigg ) \Bigg (\displaystyle \prod _{j=1}^{N} \omega _j \Bigg )\alpha ^{z-(N-1)}}\nonumber \\&\qquad (z - (N-1) > 0). \end{aligned}$$
(A.6)

In the present case, \(\mathbf {\omega }_N\) is set to \(\mathbf {\omega }_N = (1,1,\ldots ,1)\). For simplicity, we use the following notation for the Barns zeta function \(\zeta _{\textrm{B}}\) with \(\mathbf {\omega }_N = (1,1,\ldots ,1)\):

$$\begin{aligned} \zeta _{\textrm{B}}(s, \alpha ; N) = \sum _{n_1,\ldots ,n_N=0}^{\infty } \frac{1}{ ( \alpha + n_1 + n_2 + \cdots + n_N)^s} . \end{aligned}$$
(A.7)

The approximate expression of \(\zeta _{\textrm{B}}(1+z, \alpha ; N)\) for \(\alpha \gg 1\) is

$$\begin{aligned} \zeta _{\textrm{B}}(1+z, \alpha ; N)&\sim \frac{1}{\Bigg (\displaystyle \prod _{j=0}^{N-1} (z-j)\Bigg ) \alpha ^{z-(N-1)}} \nonumber \\&\qquad (z - (N-1) > 0). \end{aligned}$$
(A.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, M. Thermodynamic quantities of independent harmonic oscillators in microcanonical and canonical ensembles in the Tsallis statistics. Eur. Phys. J. B 96, 13 (2023). https://doi.org/10.1140/epjb/s10051-023-00481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00481-7

Navigation