Skip to main content
Log in

Modeling amortization systems with vector spaces

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Amortization systems are used widely in economy to generate payment schedules to repaid an initial debt with its interest. We present a generalization of these amortization systems by introducing the mathematical formalism of quantum mechanics based on vector spaces. Operators are defined for debt, amortization, interest and periodic payment and their mean values are computed in different orthonormal basis. The vector space of the amortization system will have dimension M, where M is the loan maturity and the vectors will have a SO(M) symmetry, yielding the possibility of rotating the basis of the vector space while preserving the distance among vectors. The results obtained are useful to add degrees of freedom to the usual amortization systems without affecting the interest profits of the lender while also benefitting the borrower who is able to alter the payment schedules. Furthermore, using the tensor product of algebras, we introduce loans entanglement in which two borrowers can correlate the payment schedules without altering the total repaid.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data sets used during the investigation are available from the author on reasonable request.]

Notes

  1. Finite dimensional Hilbert spaces has been widely used to model the stock market that are isomorphic to \( {\mathbb {C}} ^{d}\), where d is the discrete number of possible rates of return [44].

  2. Symmetry considerations have been explored in econophysics, where the different choice of basis of the vector space has been used to define invariant matrix rates of returns [47].

References

  1. J.S. Ardenghi, Phys. A 567, 125656 (2021)

    MathSciNet  Google Scholar 

  2. E.W. Piotrowski, J. Sladkowski, Quantum game theoretical frameworks in economics (In The Palgrave Handbook of Quantum Models in Social Science, Palgrave Macmillan), London, 2017)

    MATH  Google Scholar 

  3. J. R. Busemeyer, and P. D. Bruza, Quantum Models of Cognition and Decision (Cambridge University Press), (2014)

  4. D. Aerts, Journ. Math. Psychology 53(5), 314–348 (2009)

    MathSciNet  Google Scholar 

  5. A.L. Mogiliansky, S. Zamir, H. Zwirn, J. Math. Psychology 53(5), 349–361 (2009)

    MathSciNet  Google Scholar 

  6. V. Yukalov, D. Sornette, Theory and Decision 70(3), 283–328 (2011)

    MathSciNet  Google Scholar 

  7. A. Khrennikov, Ubiquitous quantum structure: from psychology to finance (Springer, Berlin, 2010)

    MATH  Google Scholar 

  8. E.M. Pothos, J.R. Busemeyer, Proc. R. Soc. B 276, 2171 (2009)

    Google Scholar 

  9. Z. Wang, J.R. Busemeyer, H. Atmanspacher, E.M. Pothos, Top. Cogn. Sci. 5(4), 672–688 (2013)

    Google Scholar 

  10. W.M. Gervais, A. Norenzayan, Science 336, 493 (2012)

    ADS  Google Scholar 

  11. T. Boyer-Kassema, S. Duchênec, E. Guerci, Math. Soc. Sci. 80, 33–46 (2016)

    Google Scholar 

  12. M. Schaden, A quantum approach to stock price fluctuations, arXiv:physics/0205053

  13. F. Bagarello, A quantum statistical approach to simplified stock markets. Physica A 388(20), 4397–4406 (2009)

    MathSciNet  ADS  Google Scholar 

  14. O.A. Choustova, Quantum Bohmian model for financial market. Physica A 374(1), 304–314 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  15. A. Atalluah, I. Davidson, M. Tippett, Physica A 388(4), 455–461 (2009)

    ADS  Google Scholar 

  16. B. E Baaquie, Path Integrals and Hamiltonians: Principles and Methods. Cambridge University Press, (2014)

  17. E.W. Piotrowski, J. Sładkowski, Physica A 387, 3949–3953 (2008)

    MathSciNet  ADS  Google Scholar 

  18. E.W. Piotrowski, J. Sładkowski, Quant. Finance 4(6), 61–67 (2004)

    MathSciNet  Google Scholar 

  19. K. Ahn, M.Y. Choi, B. Dai, S. Sohn, B. Yang, Europhys. Lett. 120, 3 (2018)

    Google Scholar 

  20. L. Smolin, arXiv:0902.4274v1 (2009)

  21. B. E. Baaquie, Quantum Field Theory for Economics and Finance, Cambridge University Press (2018)

  22. D.A. Meyer, Phys. Rev. Lett. 82, 1052–1055 (1999)

    MathSciNet  ADS  Google Scholar 

  23. E. Klarreich, Nature 414, 244–245 (2001)

    ADS  Google Scholar 

  24. J. Eisert, M. Wilkens, M. Lewenstein, Phys. Rev. Lett. 83, 3077–3080 (1999)

    MathSciNet  ADS  Google Scholar 

  25. J. Du, X. Xu, H. Li, X. Zhou, R. Han, Phys. Lett. A 289, 9–15 (2001)

    MathSciNet  ADS  Google Scholar 

  26. L. Marinatto, T. Weber, Phys. Lett. A 27, 291–303 (2000)

    ADS  Google Scholar 

  27. D. Aerts, The entity and modern physics: the creation discovery view of reality. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 223–257). Princeton: Princeton Unversity Press (1998)

  28. R.F. Bordley, Oper. Res. 46, 923–926 (1998)

    MathSciNet  Google Scholar 

  29. D. Aerts, S. Aerts, Found. Sci. 1, 85–97 (1994)

    Google Scholar 

  30. D. Aerts, J. Broekaert, L. Gabora, S. Sozzo, Behav. Brain Sci. 36, 274–276 (2013)

    Google Scholar 

  31. A.Y. Khrennikov, Found. Phys. 29, 1065–1098 (1999)

    MathSciNet  Google Scholar 

  32. H. Atmanspacher, H. Römer, H. Walach, Found. Phys. 32, 379–406 (2002)

    MathSciNet  Google Scholar 

  33. J. Bell, Physics 1, 195–200 (1964)

    Google Scholar 

  34. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91–94 (1982)

    ADS  Google Scholar 

  35. A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804–1807 (1982)

    MathSciNet  ADS  Google Scholar 

  36. M. Giustina, A.Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. Woo Nam, R. Ursin and A. Zeilinger, Nature 497, 227–230 (2013)

  37. J.Yin et.al. Science 16, 1140–1144 (2017)

  38. P. D. Bruza, K. Kitto, D. McEvoy and C. McEvoy, Entangling words and meaning In Proceedings of the second quantum interaction symposium (118–124). Oxford: Oxford University Press (2008)

  39. P. D. Bruza, P. D., Kitto, K., Nelson, D. & McEvoy, C. (2009). Extracting spooky-activation-at-a-distance from considerations of entanglement. In: Quantum interaction. Lecture notes in computer science, 5494 (71–83) Berlin: Springer (2009)

  40. P. Ney, S. Notarnicola, S. Montangero, G. Morigi, Phys. Rev. A 104, 062607 (2022)

    Google Scholar 

  41. G. Morri, A. Mazza, Property finance, Wiley Online Library (2015), Chapter 4

  42. J. de Souza, E.M.F. Curado, M.A. Rego-Monteiro, J. Phys. A 39, 10415 (2006)

    MathSciNet  Google Scholar 

  43. E.M.F. Curado, M.A. Rego-Monteiro, J. Phys. A 34, 3253 (2001)

    MathSciNet  ADS  Google Scholar 

  44. L.A. Cotfas, Physica A 392, 371–380 (2013)

    MathSciNet  ADS  Google Scholar 

  45. K. Berrada, M. El Baz, Y. Hassouni, Phys. Lett. A 375(3), 298–302 (2011)

    MathSciNet  ADS  Google Scholar 

  46. H. Georgi, Lie Algebras in Particle Physics, 2nd edition, Front. Phys. (WestView Press) (1999)

  47. A. Zambrzycka, E.W. Piotrowski, Physica A 382(1), 347–353 (2007)

    ADS  Google Scholar 

  48. M. Caglayan, B. Xu, J. Financial Stab. 24, 27–39 (2016)

    Google Scholar 

  49. E.W. Piotrowski, J. Sładkowski, Physica A 312, 208 (2002)

    MathSciNet  ADS  Google Scholar 

  50. A.P. Flitney, D. Abbott, Physica A 324, 152 (2003)

    MathSciNet  ADS  Google Scholar 

  51. J. Eisert, M. Wilkens, M. Lewenstein, Quantum Games and Quantum Strategies. Phys. Rev. Lett. 83, 3077 (1999)

  52. M.J. Szopa, Opt. Eono. Stud. 5(71), 90–102 (2014)

    Google Scholar 

  53. A.A. Altintas, F. Ozaydin, C. Bayindir, V. Bayracki, Photonics 9, 617 (2022)

    Google Scholar 

  54. T.L. Curtright, D.B. Fairlie, C.K. Zachos, SIGMA 10, 084 (2014)

  55. M.B. Plenio, S. Virmani, Quant. Inf. Comput. 7, 1–51 (2007)

    Google Scholar 

  56. J. Du, X. Xu, H. Li, X. Zhou, R. Han, Fluctuation Noise Lett. 2, 4 (2022)

    Google Scholar 

  57. A.M. Guren, A. Khrishnamurty, T.J. McQuade, J. Finance 76(1), 113–168 (2021)

    Google Scholar 

  58. J.C. Hatchondo, L. Martinez, Y.K. Onder, J. Int. Econ. 105, 217–229 (2017)

    Google Scholar 

  59. J. Aspinwall, G. Chaplin, M. Venn, Life Settlements and Longevity Structures: Pricing and Risk Management, Wiley Online Library (2012)

  60. D. Wu, M. Fang, Q. Wang, J. Financial Stab. 39, 79–89 (2018)

    Google Scholar 

  61. D.J. Feen, M.A. Porter, S. Willimams, M. McDonald, N.F. Johnson, N.S. Jones, Phys. Rev. E 84, 026109 (2011)

    ADS  Google Scholar 

  62. J. Shim, J. Bank. Finance 104, 103–115 (2019)

    Google Scholar 

  63. C. Demiroglu, C. James, J. Finance Econ. 118(1), 192–210 (2015)

    Google Scholar 

  64. C. Park, J. Finance 55, 5 (2000)

    Google Scholar 

  65. M. Schaden, Physica A 316(1–4), 511–538 (2002)

    MathSciNet  ADS  Google Scholar 

  66. V. Buzek, A.D. Wilson-Gordon, P.L. Knight, W.K. Lai, Phys. Rev. A 45, 11 (1992)

    ADS  Google Scholar 

  67. T. Gao, Y. Chen, Physica A 468, 307–314 (2017)

    MathSciNet  ADS  Google Scholar 

  68. D. Orrell, Physica A 539, 122928 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was partially supported by grants of CONICET (Argentina National Research Council) and Universidad Nacional del Sur (UNS) and by ANPCyT through PICT 2019-03491 Res. No. 015/2021 and PIP-CONICET 2021-2023 Grant No.11220200100941CO. J. S. A. is a member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Ardenghi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardenghi, J.S. Modeling amortization systems with vector spaces. Eur. Phys. J. B 96, 11 (2023). https://doi.org/10.1140/epjb/s10051-023-00479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00479-1

Navigation