Skip to main content

Advertisement

Log in

A phenomenological theory of itinerant weak ferromagnetism

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A phenomenological theory is explored for itinerant weak ferromagnetism. Free energy including the higher order terms of \(m^{4}\) and \(hm^{3}\) is introduced and examined. This free energy is derived from the mean-field free energy expression with the use of the Bragg–Williams entropy. We apply the present theory to the typical itinerant weak ferromagnetic materials \(\hbox {ZrZn}_{{2}}\), \(\hbox {MnSi}_{{2}}\), and others. To determine the model parameters, we use the experimental value of the magnetization under the large magnetic field or the extension of the Arrott plot with a functional form of hyperbola. This extended Arrott plot would explain various experimentally observed MH curves at finite temperatures. Finally, we discuss the Sommerfeld coefficient in magnetic fields based on the present theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this article.

Notes

  1. Note in proof: Using the data of J. Takeuchi and Y. Masuda, we find the magnetic susceptibility \(\chi _{\sim 0}^{\textrm{exp}}\) for Sc\(_{3}\) In is 0.56, not 1.12 listed in the table. [18] This value results in the metamagnetic-like behavior not observed in Sc\(_{3}\) In.

References

  1. E.C. Stoner, Proc. Roy. Soc. London 165, 372 (1938)

    ADS  Google Scholar 

  2. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Splinger-Verlag, Berlin, 1985)

    Book  Google Scholar 

  3. B.T. Matthias, M. Bozorth, Phys. Rev. 109, 604 (1958)

    Article  ADS  Google Scholar 

  4. S. Ogawa, N. Sakamoto, J. Phys. Soc. Jpn. 22, 1214 (1967)

    Article  ADS  Google Scholar 

  5. S. Foner, E.J.M. Jr., V. Sadagopa, Phys. Rev. Lett. 19, 1233 (1967)

  6. A.P.J. van Deursen, L.W.M. Schreurs, C.B. Admiraal, F.R. de Boer, A.R. de Vroomen, J. Mag. Mag. Matt. 54, 1113 (1986)

    Article  ADS  Google Scholar 

  7. E.A. Yelland, S.J.C. Yates, O. Taylor, A. Griffiths, S.M. Hayden, A. Carrington, Phys. Rev. B72, 184,436 (2005)

  8. B. Bloch, J. Voiron, V. Jaccarino, J.H. Wernick, Phys. Lett. 51A, 259 (1975)

    Article  ADS  Google Scholar 

  9. W.E. Gardner, T.F. Smith, B.W. Howlett, C.W. Chu, A. Sweedler, Phys. Rev. 166, 577 (1968)

    Article  ADS  Google Scholar 

  10. K. Kamishima, R. Note, T. Imakubo, K. Watanabe, H.A. Katori, A. Fujimori, M. Sakai, K.V. Kanenev, J. Alloys Compd. 589, 37 (2014)

    Article  Google Scholar 

  11. F.R. de Boer, C.J. Schinkel, J. Biesterbos, S. Proost, J. Appl. Phys. 40, 1049 (1969)

  12. L.D. Landau, E.M. Lifschitz, Statistical Physics, 2nd edn. (Pergamon Press Ltd., London, 1969)

  13. J.C. Tolédano, P. Tolédano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987)

    Book  MATH  Google Scholar 

  14. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  15. E.P. Wohlfarth, P.R. Rhodes, Phil. Mag. 7, 1817 (1962)

    Article  ADS  Google Scholar 

  16. N.H. Duc, D. Givord, C. Lacroix, C. Pinettes, Euro. Phys. Lett. 20, 47 (1992)

    Article  ADS  Google Scholar 

  17. A. Arrott, Phys. Rev. 108, 1394 (1957)

    Article  ADS  Google Scholar 

  18. J.Takeuchi, Y.Masuda, J.Phys.Soc.Jpn. 46, 468 (1979)

  19. K. Matsumoto, S. Murayama, Solid State Phenomena 289, 179 (2019)

    Article  Google Scholar 

  20. K. Matsumoto, S. Murayama, J. Phys. Soc. Jpn. 91, 094,603 (2022)

  21. E.P. Wohlfarth, J. Appl. Phys. 39, 1061 (1968)

    Article  ADS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Matsumoto.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, K. A phenomenological theory of itinerant weak ferromagnetism. Eur. Phys. J. B 96, 7 (2023). https://doi.org/10.1140/epjb/s10051-022-00459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00459-x

Navigation