Skip to main content
Log in

Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A sandwich structure constituting graphene and hyperbolic metamaterial (HMM) that is made of silicon carbide (SiC) nanowires is proposed to study the spontaneous emission of quantum emitter. Compared with that occurring only in the hyperbolic bands near the single HMM, the enhancement of spontaneous emission of quantum emitter near the sandwich can emerge both in and out of the hyperbolic bands. The superradiance of two quantum emitters connected by the sandwich structure in the transmission configuration has also been studied in detail. The superradiance can also be attained both in and out of the hyperbolic bands in a broad frequency range. When the distance between two quantum emitters becomes larger, the superradiance still exists by actively controlling the chemical potential of graphene. The results obtained in this study are not only meaningful for modulating the interaction between atoms or quantum emitters, but also helpful in studying the light–matter interaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and has no experimental data.]

References

  1. P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    ADS  MathSciNet  Google Scholar 

  2. G.P. Acuna, F.M. Möller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld, Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506 (2012)

    ADS  Google Scholar 

  3. M. Grätzel, Photoelectrochemical cells. Nature 414, 338 (2001)

    ADS  Google Scholar 

  4. H. Mabuchi, A.C. Doherty, Cavity quantum electrodynamics: Coherence in context. Science 298, 1372 (2002)

    ADS  Google Scholar 

  5. E.M. Purcell, H.C. Torrey, R.V. Pound, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37 (1946)

    ADS  Google Scholar 

  6. M. Thomas, J.J. Greffet, R. Carminati, J.R. Arias-Gonzalez, Single-molecule spontaneous emission close to absorbing nanostructures. Appl. Phys. Lett. 85, 3863 (2004)

    ADS  Google Scholar 

  7. V.V. Klimov, M. Ducloy, V.S. Letokhov, Spontaneous emission of an atom in the presence of nanobodies. Sov. J. Quantum Electron. 31, 569 (2001)

    ADS  Google Scholar 

  8. K.T. Shimizu, W.K. Woo, B.R. Fisher, H.J. Eisler, M.G. Bawendi, Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 89, 117104 (2002)

    Google Scholar 

  9. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2002)

    ADS  Google Scholar 

  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601 (2004)

    ADS  Google Scholar 

  11. C.H. Cho, C.O. Aspetti, M.E. Turk, J.M. Kikkawa, S.W. Nam, R. Agarwal, Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nature Mater. 10, 669 (2011)

    ADS  Google Scholar 

  12. H. Wei, X.H. Yan, Y.J. Niu, Q. Li, Z.L. Jia, H.X. Xu, Plasmon-exciton interactions: Spontaneous emission and strong coupling. Adv. Funct. Mater. 31, 2100889 (2021)

    Google Scholar 

  13. E.J.A. Kroekenstoel, E. Verhagen, R.J. Walters, L. Kuipers, A. Polman, Enhanced spontaneous emission rate in annular plasmonic nanocavities. Appl. Phys. Lett. 95, 263106 (2009)

    ADS  Google Scholar 

  14. V.V. Klimov, Spontaneous emission of an excited atom placed near a “left-handed” sphere. Opt. Commun. 211, 183 (2002)

    ADS  Google Scholar 

  15. D. Martín-Cano, L. Martín-Moreno, F.J. García-Vidal, E. Moreno, Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett. 10, 3129 (2010)

    ADS  Google Scholar 

  16. A.N. Poddubny, P. Ginzburg, P.A. Belov, A.V. Zayats, Y.S. Kivshar, Tailoring and enhancing spontaneous two-photon emission using resonant plasmonic nanostructures. Phys. Rev. A 86, 033826 (2012)

    ADS  Google Scholar 

  17. Y.G. Cheng, G.W. Lu, H.M. Shen, Y.W. Wang, Y.B. He, R.Y.Y. Chou, Q.H. Gong, Highly enhanced spontaneous emission with nanoshell-based metallodielectric hybrid antennas. Opt. Commun. 350, 40 (2015)

    ADS  Google Scholar 

  18. T.V. Shahbazyan, Spontaneous decay of a quantum emitter near a plasmonic nanostructure. Phys. Rev. B 98, 115401 (2018)

    ADS  Google Scholar 

  19. Y. Muniz, A. Manjavacas, C. Farina, D.A.R. Dalvit, W.J.M. Kort-Kamp, Two-photon spontaneous emission in atomically thin plasmonic nanostructures. Phys. Rev. Lett. 125, 033601 (2020)

    ADS  Google Scholar 

  20. M.A. Noginov, H. Li, Y.A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C.E. Bonner, M. Mayy, Z. Jacob, E.E. Narimanov, Controlling spontaneous emission with metamaterials. Opt. Lett. 35, 1863 (2010)

    ADS  Google Scholar 

  21. Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012)

    ADS  Google Scholar 

  22. W.J.M. Kort-Kamp, F.S.S. Rosa, F.A. Pinheiro, C. Farina, Spontaneous emission in the presence of a spherical plasmonic metamaterial. Phys. Rev. A 87, 023837 (2013)

    ADS  Google Scholar 

  23. D. Szilard, W.J.M. Kort-Kamp, F.S.S. Rosa, F.A. Pinheiro, C. Farina, Hysteresis in the spontaneous emission induced by VO2 phase change. J. Opt. Soc. Am. B. 36, C46 (2019)

    Google Scholar 

  24. R. Fleury, A. Alù, Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys. Rev. B 87, 201101(R) (2013)

    ADS  Google Scholar 

  25. F.T. Hu, L. Li, Y. Liu, Y. Meng, M.L. Gong, Y.M. Yang, Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material. Commun. Phys. 4, 84 (2021)

    Google Scholar 

  26. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nature Photon. 4, 611 (2010)

    ADS  Google Scholar 

  27. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291 (2011)

    ADS  Google Scholar 

  28. F.J.G. de Abajo, Graphene nanophotonics. Science 339, 917 (2013)

    ADS  Google Scholar 

  29. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A.Z. Elorza, N. Camara, F.J.G. de Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77 (2012)

    ADS  Google Scholar 

  30. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 11, 3370 (2011)

    ADS  Google Scholar 

  31. AYu. Nikitin, F. Guinea, F.J. García-Vidal, L. Martín-Moreno, Fields radiated by a nanoemitter in a graphene sheet. Phys. Rev. B 84, 195446 (2011)

    ADS  Google Scholar 

  32. W.J.M. Kort-Kamp, B. Amorim, G. Bastos, F.A. Pinheiro, F.S.S. Rosa, N.M.R. Peres, C. Farina, Active magneto-optical control of spontaneous emission in graphene. Phys. Rev. B 92, 205415 (2015)

    ADS  Google Scholar 

  33. P.A. Huidobro, A.Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, F.J. García-Vidal, Superradiance mediated by graphene surface plasmons. Phys. Rev. B 85, 155438 (2012)

    ADS  Google Scholar 

  34. X. Gan, Y. Gao, K.F. Mak, X. Yao, R.-J. Shiue, A. van der Zande, M.E. Trusheim, F. Hatami, T.F. Heinz, J. Hone, D. Englund, Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013)

    ADS  Google Scholar 

  35. L. Zhang, X. Fu, M. Zhang, J. Yang, Spontaneous emission in paired graphene plasmonic waveguide structures. Opt. Express 21, 7897 (2013)

    ADS  Google Scholar 

  36. L. Sun, B. Tang, C. Jiang, Enhanced spontaneous emission of mid-infrared dipole emitter in double-layer graphene waveguide. Opt. Express 22, 26487 (2014)

    ADS  Google Scholar 

  37. H.Q. Mu, T.B. Wang, D.J. Zhang, W.X. Liu, T.B. Yu, Q.H. Liao, Mechanical modulation of spontaneous emission of nearby nanostructured black phosphorus. Opt. Express 29, 1037 (2021)

    ADS  Google Scholar 

  38. J.D. Caldwell, A.V. Kretinin, Y. Chen, V. Giannini, M.M. Fogler, Y. Francescato, C.T. Ellis, J.G. Tischler, C.R. Woods, A.J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S.A. Maier, K.S. Novoselov, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun. 5, 5221 (2014)

    ADS  Google Scholar 

  39. S. Dai, Q. Ma, M.K. Liu, T. Andersen, Z. Fei, M.D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G.C.A.M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M.M. Fogler, D.N. Basov, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotech. 10, 682 (2015)

    ADS  Google Scholar 

  40. P. Li, I. Dolado, F.J. Alfaro-Mozaz, F. Casanova, L.E. Hueso, S. Liu, J.H. Edgar, A.Y. Nikitin, S. Vélez, R. Hillenbrand, Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892 (2018)

    ADS  Google Scholar 

  41. W. Ma, P. Alonso-González, S. Li, A.Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee, R. Hillenbrand, Q. Bao, In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557 (2018)

    ADS  Google Scholar 

  42. X.H. Wu, Theoretical investigation of the effect of hexagonal boron nitride on perfect absorption in infrared regime. Opt. Commun. 425, 172 (2018)

    ADS  Google Scholar 

  43. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nature Photon. 7, 948 (2013)

    ADS  Google Scholar 

  44. P.C. Huo, S. Zhang, Y.Z. Liang, Y.Q. Lu, T. Xu, Hyperbolic metamaterials and metasurfaces: Fundamentals and applications. Adv. Opt. Mater. 7, 1801616 (2019)

    Google Scholar 

  45. Z.W. Guo, H.T. Jiang, H. Chena, Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 127, 071101 (2020)

    ADS  Google Scholar 

  46. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 063001 (2012)

    ADS  Google Scholar 

  47. J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 8100 (2012)

    ADS  Google Scholar 

  48. D. Lu, J.J. Kan, E.E. Fullerton, Z.W. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nature Nanotech. 9, 48 (2014)

    ADS  Google Scholar 

  49. T. Galfsky, H.N.S. Galfsky, W. Newman, E.E. Narimanov, Z. Jacob, V.M. Menon, Active hyperbolic metamaterials: Enhanced spontaneous emission and light extraction. Optica 2, 62 (2015)

    ADS  Google Scholar 

  50. B. Zhao, B. Guizal, Z.M. Zhang, S.H. Fan, M. Antezza, Near-field heat transfer between graphene/hBN multilayers. Phys. Rev. B 95, 245437 (2017)

    ADS  Google Scholar 

  51. K.Z. Shi, F.L. Bao, S.L. He, Enhanced near-field thermal radiation based on multilayer graphene–hBN heterostructures. ACS Photonics 4, 971 (2017)

    Google Scholar 

  52. L.M. Ye, H.N. Liang, T.B. Wang, D.J. Zhang, W.X. Liu, T.B. Yu, Q.H. Liao, Modulation of spontaneous emission near graphene/hBN multilayers. J. Opt. Soc. Am. B 37, 3888 (2021)

    ADS  Google Scholar 

  53. H.Q. Mu, Y. Zhou, T.B. Wang, D.J. Zhang, W.X. Liu, T.B. Yu, Q.H. Liao, Spontaneous emission mediated by graphene/hexagonal boron nitride/graphene sandwich structure. EPL 136, 37001 (2021)

    ADS  Google Scholar 

  54. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009)

    ADS  Google Scholar 

  55. G. Fan, H. Zhu, K. Wang, K. Wang, J. Wei, X. Li, Q. Shu, N. Guo, D. Wu, Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl. Mater. Interfaces 3, 721 (2011)

    Google Scholar 

  56. X.P. Li, Z.Q. Li, L.K. Que, Y.J. Ma, L. Zhu, C.H. Pei, Electromagnetic wave absorption performance of Graphene/SiC nanowires based on graphene oxide. J. Alloy. Compd. 835, 155172 (2020)

    Google Scholar 

  57. L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  58. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    ADS  Google Scholar 

  59. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007)

    ADS  Google Scholar 

  60. S.-A. Biehs, P. Ben-Abdallah, F.S.S. Rosa, K. Joulain, J.-J. Greffet, Nanoscale heat flux between nanoporous materials. Opt. Express 19, A1088 (2011)

    Google Scholar 

  61. S.-A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012)

    ADS  Google Scholar 

  62. R.J. Pollard, A. Murphy, W.R. Hendren, P.R. Evans, R. Atkinson, G.A. Wurtz, A.V. Zayats, V.A. Podolskiy, Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009)

    ADS  Google Scholar 

  63. E. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 12164027, 11704175, 12064025).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding author

Correspondence to Tongbiao Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Mu, H., Wang, T. et al. Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure. Eur. Phys. J. B 95, 193 (2022). https://doi.org/10.1140/epjb/s10051-022-00456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00456-0

Navigation