Skip to main content
Log in

Tunable terahertz structure based on graphene hyperbolic metamaterials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Photoexcited graphene can behave as the gain medium aiming to come up with the coherent radiation at low THz spectral region. However, its response is very weak because of its atomic dimensions. Herein, a different design aiming to obtain effective tunable THz amplifiers, having small dimensions and lasers with broadband operation based on active THz hyperbolic metamaterials (HMM) is demonstrated. HMMs are considered by employing multiple stacked photoexcited graphene sheets divided by dielectric spacers. Herein, we study and characterize the hyperbolic THz regime of the studied atomic active HMM. A broadband slow-wave propagation regime takes place if the graphene-based HMM system is periodically patterned. This occurs due to the hyperbolic dispersion. Doing so, reconfigurable amplification of THz waves in a broad-spectrum region is attained. This might be engineered by tuning the quasi-Fermi level of graphene. Moreover, the mechanisms leading to the increase of the frequency region of bound surface wave have been proposed in the frame of the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Argyropoulos, C., Estakhri, N.M., Monticone, F., Alù, A.: Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt. Express 21(12), 15037–15047 (2013)

    Article  ADS  Google Scholar 

  • Batrakov, K., Saroka, V. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds.) Nanomater. Imaging Tech. Surf. Stud. Appl., pp. 103–115. Springer, New York (2013)

  • Batrakov, K., Maksimenko, S.: Graphene layered systems as a terahertz source with tuned frequency. Phys. Rev. B 95, 205408 (2017)

  • Batrakov, K.G., Saroka, V.A., Maksimenko, S.A., Thomsen, C.: Plasmon polariton deceleration in graphene structure. J. Nanophotonics 6, 061719 (2012)

    Article  ADS  Google Scholar 

  • Berreman, D.W.: Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys. Rev. 130, 2193–2198 (1963)

    Article  ADS  Google Scholar 

  • Campione, S., Luk, T.S., Liu, S., Sinclair, M.B.: Optical properties of transiently-excited semiconductor hyperbolic metamaterials. Opt. Express 5(11), 2385–2394 (2015a)

    Article  Google Scholar 

  • Campione, S., Brener, I., Marquier, F.: Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015b)

  • Chang, Y.-C., Liu, C.-H., Liu, C.-H., Zhang, S., Marder, S.R., Narimanov, E.E., Zhong, Z., Norris, T.B.: Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 7, 10568 (2016)

  • Chen, P.Y., Jung, J.: P T symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces. Phys. Rev. Appl. 5(6), 064018 (2016)

  • Falkovsky, L.A., Varlamov, A.A.: Space-time dispersion of graphene conductivity. Eur. Phys. J. B 56(4), 281–284 (2007)

    Article  ADS  Google Scholar 

  • Fallahi, A., Perruisseau-Carrier, J.: Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B 86(19), 195408 (2012)

  • Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves. Prentice-Hall, Upper Saddle (1973)

    MATH  Google Scholar 

  • Gric, T., Hess, O.: Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express 25, 11466–11476 (2017)

    Article  ADS  Google Scholar 

  • Guclu, C., Campione, S., Capolino, F.: Hyperbolic metamaterial as super absorber for scattered fields generated at its surface. Phys. Rev. B 86(20), 205130 (2012)

  • Guo, T., et al.: Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials. Opt. Mater. Express 8(12), 3941–3952 (2018)

    Article  ADS  Google Scholar 

  • Hill, A., Mikhailov, S.A., Ziegler, K.: Dielectric function and plasmons in graphene. EPL Europhys. Lett. 87, 27005 (2009)

    Article  ADS  Google Scholar 

  • Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L., Gmachl, C.: Negative refraction in semiconductor metamaterials. Nat. Mater. 6(12), 946–950 (2007)

    Article  ADS  Google Scholar 

  • Hwang, E.H., Adam, S., Sarma, S.D.: Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007)

    Article  ADS  Google Scholar 

  • Iorsh, I.V., Mukhin, I.S., Shadrivov, I.V., Belov, P.A., Kivshar, Y.S.: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 88(3), 039904 (2013)

  • Jiang, L., Tang, J., Wang, Q., Wu, Y., Zheng, Z., Xiang, Y., Dai, X.: Manipulating optical Tamm state in the terahertz frequency range with graphene. Chin. Opt. Lett. 17, 020008 (2019)

  • Karasawa, H., Komori, T., Watanabe, T., Satou, A., Fukidome, H., Suemitsu, M., Ryzhii, V., Otsuji, T.: Observation of amplified stimulated Terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials. J. Infrared Millim. Terahertz Waves 32, 655–665 (2010)

    Article  Google Scholar 

  • Kidwai, O., Zhukovsky, S.V., Sipe, J.E.: Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations. Phys. Rev. A 85(5), 053842 (2012)

  • Kliewer, K., Fuchs, R.: Collective electronic motion in a metallic slab. Phys. Rev. 153, 498–512 (1967)

    Article  ADS  Google Scholar 

  • Koppens, F.H., Chang, D.E., García de Abajo, F.J.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11(8), 3370–3377 (2011)

    Article  ADS  Google Scholar 

  • Krishnamoorthy, H.N.S., Jacob, Z., Narimanov, E., Kretzschmar, I., Menon, V.M.: Topological transitions in metamaterials. Science 336(6078), 205–209 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • McAlister, A., Stern, E.: Plasma resonance absorption in thin metal films. Phys. Rev. 132, 1599–1602 (1963)

    Article  ADS  Google Scholar 

  • Mikhailov, S.A.: Quantum theory of third-harmonic generation in graphene. Phys. Rev. B 90, 241301 (2014)

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  • Othman, M.A.K., Guclu, C., Capolino, F.: Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 21(6), 7614–7632 (2013a)

    Article  ADS  Google Scholar 

  • Othman, M.A.K., Guclu, C., Capolino, F.: Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophotonics 7(1), 073089 (2013b)

    Article  ADS  Google Scholar 

  • Poddubny, A., Iorsh, I., Belov, P., Kivshar, Y.: Hyperbolic metamaterials. Nat. Photonics 7(12), 948–957 (2013)

    Article  ADS  Google Scholar 

  • Ryzhii, V.: Terahertz plasma waves in gated graphene heterostructures. Jpn. J. Appl. Phys. 45, L923 (2006)

    Article  ADS  Google Scholar 

  • Ryzhii, V., Satou, A., Otsuji, T.: Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007)

    Article  ADS  Google Scholar 

  • Ryzhii, V., Dubinov, A.A., Aleshkin, V.Y., Ryzhii, M., Otsuji, T.: Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Appl. Phys. Lett. 103, 163507 (2013)

    Article  ADS  Google Scholar 

  • Sakhdari, M., et al.: “PT-symmetric metasurfaces: wave manipulation and sensing using singular points. New J. Phys. 19(6), 065002 (2018)

    Article  ADS  Google Scholar 

  • Smith, D.R., Schurig, D.: Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90(7), 077405 (2003)

  • Sreekanth, K.V., De Luca, A., Strangi, G.: Negative refraction in graphene-based hyperbolic metamaterials. Appl. Phys. Lett. 103(2), 023107 (2013)

    Article  ADS  Google Scholar 

  • Svintsov, D., Vyurkov, V., Ryzhii, V., Otsuji, T.: Voltage-controlled surface plasmon-polaritons in double graphene layer structures. J. Appl. Phys. 113, 053701 (2013)

    Article  ADS  Google Scholar 

  • Vassant, S., Hugonin, J.-P., Marquier, F., Greffet, J.-J.: Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012a)

    Article  ADS  Google Scholar 

  • Vassant, S., Archambault, A., Marquier, F., Pardo, F., Gennser, U., Cavanna, A., Pelouard, J., Greffet, J.-J.: Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 109, 237401 (2012b)

  • Xiang, Y., Guo, J., Dai, X., Wen, S., Tang, D.: Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt. Express 22(3), 3054–3062 (2014)

    Article  ADS  Google Scholar 

  • Yan, H., et al.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7, 330–334 (2012)

    Article  ADS  Google Scholar 

  • Zeshan Yaqoob, M., Ghaffar, A., Alkanhal, M., Ur Rehman, S.: Characteristics of light–plasmon coupling on chiral–graphene interface. J. Opt. Soc. Am. B 36, 90–95 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Gric.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gric, T. Tunable terahertz structure based on graphene hyperbolic metamaterials. Opt Quant Electron 51, 202 (2019). https://doi.org/10.1007/s11082-019-1918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1918-5

Keywords

Navigation