Skip to main content
Log in

Effect of spin–orbit coupling in one-dimensional quasicrystals with power-law hopping

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the one-dimensional quasiperiodic Aubry–André–Harper Hamiltonian with nearest-neighbor hopping, all single-particle eigenstates undergo a phase transition from ergodic to localized states at a critical value of the quasiperiodic potential \(W/t = 2.0\). There is no mobility edge in this system. However, in the presence of power-law hopping having the form \(1/r^a\), beyond a finite value of the quasiperiodic potential \((W_c)\) the mobility edge appears for \(a > 1\), while, for \(0< a\le 1\), a multifractal edge separates the extended and the multifractal states. In both these limits, depending on the quasiperiodicity strength, the lowest \(\beta ^s L\) states are delocalized. We have found that, in the presence of the spin–orbit coupling, the critical quasiperiodicity strength is always larger irrespective of the value of the parameter a. Furthermore, we demonstrate that for \(0< a\le 1\), in the presence of spin–orbit coupling, there exists multiple multifractal edges, and the energy spectrum splits up into alternative bands of delocalized and multifractal states. Moreover, the location of the multifractal edges are generally given by the fraction \((\beta ^s \pm \beta ^m)\). The qualitative behavior of the energy spectrum remains unaffected for \(a > 1\). However, in contrast to the previously reported results, we find that in this limit, similar to the other case, multiple mobility edges can exist with or without the spin–orbit coupling.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data and the authors confirm that the data supporting the findings of this study are available within the article.]

References

  1. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958). https://doi.org/10.1103/PhysRev.109.1492

    Article  ADS  Google Scholar 

  2. N.F. Mott, W.D. Twose, The theory of impurity conduction. Adv. Phys. 10(38), 107–163 (1961). https://doi.org/10.1080/00018736100101271

    Article  ADS  Google Scholar 

  3. R.E. Borland, J.A. Pople, The nature of the electronic states in disordered one-dimensional systems. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 274(1359), 529–545 (1963). https://doi.org/10.1098/rspa.1963.0148

    Article  ADS  MATH  Google Scholar 

  4. V.L. Berezinskii, Kinetics of a quantum particle in a one-dimensional random potential. Sov. Phys. JETP 38(3), 620–627 (1974)

    ADS  Google Scholar 

  5. S. Hikami, A.I. Larkin, Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63(2), 707–710 (1980). https://doi.org/10.1143/PTP.63.707

    Article  ADS  Google Scholar 

  6. S.N. Evangelou, Anderson transition, scaling, and level statistics in the presence of spin orbit coupling. Phys. Rev. Lett. 75, 2550–2553 (1995). https://doi.org/10.1103/PhysRevLett.75.2550

    Article  ADS  Google Scholar 

  7. Y. Asada, K. Slevin, T. Ohtsuki, Anderson transition in two-dimensional systems with spin-orbit coupling. Phys. Rev. Lett. 89, 256601 (2002). https://doi.org/10.1103/PhysRevLett.89.256601

    Article  ADS  Google Scholar 

  8. Y. Su, X.R. Wang, Role of spin degrees of freedom in Anderson localization of two-dimensional particle gases with random spin-orbit interactions. Phys. Rev. B 98, 224204 (2018). https://doi.org/10.1103/PhysRevB.98.224204

    Article  ADS  Google Scholar 

  9. C. Wang, Y. Su, Y. Avishai, Y. Meir, X.R. Wang, Band of critical states in Anderson localization in a strong magnetic field with random spin-orbit scattering. Phys. Rev. Lett. 114, 096803 (2015). https://doi.org/10.1103/PhysRevLett.114.096803

    Article  ADS  Google Scholar 

  10. Y. Su, C. Wang, Y. Avishai, Y. Meir, X.R. Wang, Absence of localization in disordered two-dimensional electron gas at weak magnetic field and strong spin-orbit coupling. Sci. Rep. 6, 33304 (2016). https://doi.org/10.1038/srep33304

    Article  ADS  Google Scholar 

  11. P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68(10), 874–878 (1955). https://doi.org/10.1088/0370-1298/68/10/304

    Article  ADS  MATH  Google Scholar 

  12. M.Y. Azbel, Quantization of quasi-particles with a periodic dispersion law in a strong magnetic field. Sov. Phys. JETP 17(3), 665–666 (1963)

    Google Scholar 

  13. M.Y. Azbel, Quantum particle in one-dimensional potentials with incommensurate periods. Phys. Rev. Lett. 43, 1954–1957 (1979). https://doi.org/10.1103/PhysRevLett.43.1954

    Article  ADS  Google Scholar 

  14. S. Aubry, G. Andre, Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3(133) (1980)

  15. X. Deng, S. Ray, S. Sinha, G.V. Shlyapnikov, L. Santos, One-dimensional quasicrystals with power-law hopping. Phys. Rev. Lett. 123, 025301 (2019). https://doi.org/10.1103/PhysRevLett.123.025301

    Article  ADS  Google Scholar 

  16. D.K. Sahu, A.P. Acharya, D. Choudhuri, S. Datta, Self-duality of one-dimensional quasicrystals with spin-orbit interaction. Phys. Rev. B 104, 054202 (2021). https://doi.org/10.1103/PhysRevB.104.054202

    Article  ADS  Google Scholar 

  17. A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J.H. Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, B. Laburthe-Tolra, Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013). https://doi.org/10.1103/PhysRevLett.111.185305

    Article  ADS  Google Scholar 

  18. B. Yan, S.A. Moses, B. Gadway, J.P. Covey, K.R.A. Hazzard, A.M. Rey, D.S. Jin, J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521 (2013). https://doi.org/10.1038/nature12483

    Article  ADS  Google Scholar 

  19. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010). https://doi.org/10.1103/RevModPhys.82.2313

    Article  ADS  Google Scholar 

  20. C.-L. Hung, A. González-Tudela, J.I. Cirac, H.J. Kimble, Quantum spin dynamics with pairwise-tunable, long-range interactions. Proc. Natl. Acad. Sci. 113(34), 4946–4955 (2016). https://doi.org/10.1073/pnas.1603777113

  21. Y.J. Lin, K. Jiménez-García, I.B. Spielman, Spin-orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011). https://doi.org/10.1038/nature09887

  22. P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Spin-orbit coupled degenerate fermi gases. Phys. Rev. Lett. 109, 095301 (2012). https://doi.org/10.1103/PhysRevLett.109.095301

  23. L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Spin-injection spectroscopy of a spin-orbit coupled fermi gas. Phys. Rev. Lett. 109, 095302 (2012). https://doi.org/10.1103/PhysRevLett.109.095302

    Article  ADS  Google Scholar 

  24. J.E. Birkholz, V. Meden, Spin-polarized currents through interacting quantum wires with nonmagnetic leads. Phys. Rev. B 79, 085420 (2009). https://doi.org/10.1103/PhysRevB.79.085420

    Article  ADS  Google Scholar 

  25. T. Ando, Numerical study of symmetry effects on localization in two dimensions. Phys. Rev. B 40, 5325–5339 (1989). https://doi.org/10.1103/PhysRevB.40.5325

    Article  ADS  Google Scholar 

  26. R. Merkt, M. Janssen, B. Huckestein, Network model for a two-dimensional disordered electron system with spin-orbit scattering. Phys. Rev. B 58, 4394–4405 (1998). https://doi.org/10.1103/PhysRevB.58.4394

    Article  ADS  Google Scholar 

  27. K. Minakuchi, Two-dimensional random-network model with symplectic symmetry. Phys. Rev. B 58, 9627–9630 (1998). https://doi.org/10.1103/PhysRevB.58.9627

    Article  ADS  Google Scholar 

  28. B. Kramer, A. MacKinnon, Localization: theory and experiment. Rep. Prog. Phys. 56(12), 1469–1564 (1993). https://doi.org/10.1088/0034-4885/56/12/001

    Article  ADS  Google Scholar 

  29. F. Evers, A.D. Mirlin, Fluctuations of the inverse participation ratio at the Anderson transition. Phys. Rev. Lett. 84, 3690–3693 (2000). https://doi.org/10.1103/PhysRevLett.84.3690

    Article  ADS  Google Scholar 

  30. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986). https://doi.org/10.1103/PhysRevA.33.1141

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. JANSSEN, Multifractal analysis of broadly-distributed observables at criticality. Int. J. Mod. Phys. B 08(08), 943–984 (1994)

    Article  ADS  Google Scholar 

  32. A. De Luca, B.L. Altshuler, V.E. Kravtsov, A. Scardicchio, Anderson localization on the Bethe lattice: nonergodicity of extended states. Phys. Rev. Lett. 113, 046806 (2014). https://doi.org/10.1103/PhysRevLett.113.046806

    Article  ADS  Google Scholar 

  33. E. Cuevas, \(f({\alpha })\) multifractal spectrum at strong and weak disorder. Phys. Rev. B 68, 024206 (2003). https://doi.org/10.1103/PhysRevB.68.024206

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the computational facility provided by SERB (DST), India (EMR/2015/001227).

Author information

Authors and Affiliations

Authors

Contributions

DKS: conceptualization, investigation, methodology, data handling, plotting data, and writing the original draft. SD: conceptualization, project administration, resources, supervision, validation, writing and correcting the original draft.

Corresponding author

Correspondence to Sanjoy Datta.

Appendices

Appendix A: IPR for weak RSO interaction in the short-range limit

In this section, we have discussed the behavior of mobility edges in the energy spectrum for a short-range \((a>1)\) GAA model having a smaller amplitude of RSO coefficients \(\alpha _y,\alpha _z\) (as shown in Fig. 10). We can observe that with weaker RSO coupling, only the first window (where only a single mobility edge exists) just after the critical point gets destroyed, while the rest of such windows remain unaffected. In Fig. 4 of the main text, we have observed that as the strength of the RSO coupling is increased, such windows appear only at a higher quasiperiodicity strength.

Appendix B: Finite size scaling of IPR

In this section, we have presented the finite-size scaling of the average IPR (averaged over states) for both the short-range \((a = 1.5)\) and long-range \((a = 0.5)\) GAA Hamiltonian with the RSO coupling. Figure 11a shows the finite-size scaling of the average IPR as a function of 1/L at \(W/t = 3.0\), where the average is taken over the electronic states corresponding to the \(\textrm{ERG}^1\) and \(\textrm{LOC}^1\) regions for the short-range GAA model, as shown in Fig. 5b. This finite scaling of IPR confirms the presence of both the delocalized and localized states in the energy spectrum in the short-range GAA model. Similarly, we have shown the finite-size scaling of IPR for the long-range GAA model in Fig. 11b. Here, we have presented the scaling for two different regions, \(\textrm{ERG}^1\) and \(\textrm{MF}^1\), as shown in Fig. 7b at \(W=4.0\). It is evident that the IPR value for states belonging to the region \(\textrm{ERG}^1\) vanishes as 1/L, indicating that these states are extended. For the states belonging to the region \(\textrm{LOC}^1\), the average IPR value approaches unity for all L. It is almost independent of the system size that is \(IPR \propto L^0\), indicating that these states are localized. In contrast to these, the average IPR shows a large fluctuation for the states corresponding to the region \(\textrm{MF}^1\) and does not scale well with 1/L, indicating that these states are multifractal types.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, D.K., Datta, S. Effect of spin–orbit coupling in one-dimensional quasicrystals with power-law hopping. Eur. Phys. J. B 95, 191 (2022). https://doi.org/10.1140/epjb/s10051-022-00454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00454-2

Navigation