Skip to main content
Log in

Multipartite nonlocality and topological quantum phase transitions in a spin-1/2 XXZ model on a zigzag lattice

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Multipartite nonlocality is a measure of multipartite quantum correlations. In this paper, we investigate multipartite nonlocality in a spin-\(\frac{1}{2}\) XXZ model on a one-dimensional (1D) infinite-size zigzag lattice. In the ground states, the model can undergo topological-type quantum phase transitions (QPTs) between a singlet dimer (SD) phase and an even-parity dimer (ED) phase. Two nonlocality measures \({\mathcal {S}}_o\) (defined on the odd-bond subchains) and \({\mathcal {S}}_e\) (defined on the even-bond subchains) are used to characterize these topological-type QPTs. Both measures show some kinds of singularity (i.e., a discontinuity of the measure or the divergence of its derivative) in the QPTs. Furthermore, in the SD phase and in the vicinity of critical regions, \({\mathcal {S}}_o\) is relatively large, and in most regions of the ED phase, \({\mathcal {S}}_o\) is nearly zero. Thus, similar to order parameters in traditional phase transitions, \({\mathcal {S}}_o\) is an effective physical quantity to characterize these topological-type QPTs. Scaling behavior of the nonlocality measure is also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. According to Eq. (7), if \(\text {Tr}( {\hat{\rho }}_n{\hat{S}}_{n} )\) achieves its maximum value for some \(\underline{{\varvec{a}}}\), the same maximum value can be achieved by \(\text {Tr}( {\hat{\rho }}_n{\hat{S}}'_{n} )\) for \(\underline{{\varvec{a}}}'\). Generally speaking, we shall have \(\underline{{\varvec{a}}}\ne \underline{{\varvec{a}}}'\), and thus, \(\text {Tr}( {\hat{\rho }}_n{\hat{S}}_{n} )\) and \(\text {Tr}( {\hat{\rho }}_n{\hat{S}}'_{n} )\) could not achieve this maximum at the same time.

References

  1. O. Gühne, G. Tóth, H.J. Briegel, New J. Phys. 7, 229 (2005)

    Google Scholar 

  2. F. Levi, F. Mintert, Phys. Rev. Lett. 110, 150402 (2013)

    ADS  Google Scholar 

  3. M. Paternostro, D. Vitali, S. Gigan, M.S. Kim, C. Brukner, J. Eisert, M. Aspelmeyer, Phys. Rev. Lett. 99, 250401 (2007)

    ADS  Google Scholar 

  4. M. Brenes, S. Pappalardi, J. Goold, A. Silva, Phys. Rev. Lett. 124, 040605 (2020)

    MathSciNet  ADS  Google Scholar 

  5. Z. Ren, W. Li, A. Smerzi, M. Gessner, Phys. Rev. Lett. 126, 080502 (2021)

    ADS  Google Scholar 

  6. M. Markiewicz, A. Przysiezna, S. Brierley, T. Paterek, Phys. Rev. A 89, 062319 (2014)

    ADS  Google Scholar 

  7. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 1999)

    MATH  Google Scholar 

  8. T.R. de Oliveira, G. Rigolin, M.C. de Oliveira, E. Miranda, Phys. Rev. Lett. 97, 170401 (2006)

    Google Scholar 

  9. T.R. de Oliveira, G. Rigolin, M.C. de Oliveira, E. Miranda, Phys. Rev. Lett. 98, 079902 (2007)

    ADS  Google Scholar 

  10. D. Collins, N. Gisin, S. Popescu, D. Roberts, V. Scarani, Phys. Rev. Lett. 88, 170405 (2002)

    ADS  Google Scholar 

  11. Q.Y. He, E.G. Cavalcanti, M.D. Reid, P.D. Drummond, Phys. Rev. Lett. 103, 180402 (2009)

    MathSciNet  ADS  Google Scholar 

  12. J.D. Bancal, C. Branciard, N. Gisin, S. Pironio, Phys. Rev. Lett. 103, 090503 (2009)

    ADS  Google Scholar 

  13. J. Batle, M. Casas, J. Phys. A 44, 445304 (2011)

    MathSciNet  ADS  Google Scholar 

  14. N. Brunner, J. Sharam, T. Vértesi, Phys. Rev. Lett. 108, 110501 (2012)

    ADS  Google Scholar 

  15. X. Wang, C. Zhang, Q. Chen, S. Yu, H. Yuan, C.H. Oh, Phys. Rev. A 94, 022110 (2016)

    ADS  Google Scholar 

  16. J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, N. Brunner, Phys. Rev. Lett. 116, 130401 (2016)

    ADS  Google Scholar 

  17. J.D. Bancal, J. Barrett, N. Gisin, S. Pironio, Phys. Rev. A 88, 014102 (2013)

    ADS  Google Scholar 

  18. G.B. Xu, Q.Y. Wen, S.J. Qin, Y.H. Yang, F. Gao, Phys. Rev. A 93, 032341 (2016)

    ADS  Google Scholar 

  19. B.P. Lanyon, M. Zwerger, P. Jurcevic, C. Hempel, W. Dür, H.J. Briegel, R. Blatt, C.F. Roos, Phys. Rev. Lett. 112, 100403 (2014)

    ADS  Google Scholar 

  20. R. Orús, Ann. Phys. 349, 117 (2014)

    MathSciNet  ADS  Google Scholar 

  21. U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011 Special Issue

  22. Z.Y. Sun, H.X. Wen, M. Li, B. Guo, Phys. Rev. A 105, 012213 (2022)

    ADS  Google Scholar 

  23. Z.Y. Sun, S. Liu, H.L. Huang, D. Zhang, Y.Y. Wu, J. Xu, B.F. Zhan, H.G. Cheng, C.B. Duan, B. Wang, Phys. Rev. A 90, 062129 (2014)

    ADS  Google Scholar 

  24. Z.Y. Sun, B. Guo, H.L. Huang, Phys. Rev. A 92, 022120 (2015)

    ADS  Google Scholar 

  25. Z.Y. Sun, Y.Y. Wu, J. Xu, H.L. Huang, B.F. Zhan, B. Wang, C.B. Duan, Phys. Rev. A 89, 022101 (2014)

    ADS  Google Scholar 

  26. S. Campbell, M. Paternostro, Phys. Rev. A 82, 042324 (2010)

    ADS  Google Scholar 

  27. J. Batle, M. Casas, Phys. Rev. A 82, 062101 (2010)

    MathSciNet  ADS  Google Scholar 

  28. Y. Dai, C. Zhang, W. You, Y. Dong, C.H. Oh, Phys. Rev. A 96, 012336 (2017)

    ADS  Google Scholar 

  29. L. Justino, T.R. de Oliveira, Phys. Rev. A 85, 052128 (2012)

    ADS  Google Scholar 

  30. D.L. Deng, C. Wu, J.L. Chen, S.J. Gu, S. Yu, C.H. Oh, Phys. Rev. A 86, 032305 (2012)

    ADS  Google Scholar 

  31. Z.Y. Sun, M. Wang, Y.Y. Wu, B. Guo, Phys. Rev. A 99, 042323 (2019)

    ADS  Google Scholar 

  32. H.G. Cheng, M. Li, Y.Y. Wu, M. Wang, D. Zhang, J. Bao, B. Guo, Z.Y. Sun, Phys. Rev. A 101, 052116 (2020)

    ADS  Google Scholar 

  33. Z.Y. Sun, M. Li, L.H. Sheng, B. Guo, Phys. Rev. A 103, 052205 (2021)

    ADS  Google Scholar 

  34. Z.Y. Sun, X. Guo, M. Wang, Euro. Phys. J. B 92, 75 (2019)

    ADS  Google Scholar 

  35. Zhao-Yu. Sun, Meng Li, Hui-Xin. Wen, Hong-Guang. Cheng, Xu. Jian, Yan-Shan. Chen, Eur. Phys. J. B 94, 141 (2021)

    ADS  Google Scholar 

  36. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    ADS  Google Scholar 

  37. X.Y. Feng, G.M. Zhang, T. Xiang, Phys. Rev. Lett. 98, 087204 (2007)

    ADS  Google Scholar 

  38. A. Hamma, W. Zhang, S. Haas, D.A. Lidar, Phys. Rev. B 77, 155111 (2008)

    ADS  Google Scholar 

  39. C. Castelnovo, C. Chamon, Phys. Rev. B 77, 054433 (2008)

    ADS  Google Scholar 

  40. I. Maruyama, T. Hirano, Y. Hatsugai, Phys. Rev. B 79, 115107 (2009)

    ADS  Google Scholar 

  41. Y.X. Chen, S.W. Li, Phys. Rev. A 81, 032120 (2010)

    ADS  Google Scholar 

  42. S.B. Chung, H. Yao, T.L. Hughes, E.A. Kim, Phys. Rev. B 81, 060403 (2010)

    ADS  Google Scholar 

  43. R. Orús, T.C. Wei, O. Buerschaper, A. García-Saez, Phys. Rev. Lett. 113, 257202 (2014)

    ADS  Google Scholar 

  44. W.W. Cheng, Z.Z. Du, L.Y. Gong, S.M. Zhao, J.M. Liu, Epl 108, 46003 (2014)

    ADS  Google Scholar 

  45. C.J. Shan, W.W. Cheng, J.B. Liu, Y.S. Cheng, T.K. Liu, Sci. Rep. 4, 4473 (2014)

    Google Scholar 

  46. M. Johansson, M. Ericsson, E. Sjöqvist, A. Osterloh, Phys. Rev. A 89, 012320 (2014)

    ADS  Google Scholar 

  47. M. Greiter, V. Schnells, R. Thomale, Ann. Phys. 351, 1026 (2014)

    ADS  Google Scholar 

  48. I.N. Karnaukhov, I.O. Slieptsov, Euro. Phys. J. B 87, 230 (2014)

    ADS  Google Scholar 

  49. X.S. Ye, Y.J. Liu, X.H. Zeng, G. Wu, Sci. Rep. 5, 17358 (2015)

    ADS  Google Scholar 

  50. C.K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016)

    ADS  Google Scholar 

  51. K. Kato, F. Furrer, M. Murao, Phys. Rev. A 93, 022317 (2016)

    ADS  Google Scholar 

  52. J.M. Kosterlitz, Rev. Mod. Phys. 89, 040501 (2017)

    MathSciNet  ADS  Google Scholar 

  53. F.D.M. Haldane, Rev. Mod. Phys. 89, 040502 (2017)

    MathSciNet  ADS  Google Scholar 

  54. X.G. Wen, Rev. Mod. Phys. 89, 041004 (2017)

    ADS  Google Scholar 

  55. L. Pezzè, M. Gabbrielli, L. Lepori, A. Smerzi, Phys. Rev. Lett. 119, 250401 (2017)

    ADS  Google Scholar 

  56. M.A. Continentino, Physica B 505, A1 (2017)

    Google Scholar 

  57. J. Cho, K.W. Kim, Sci. Rep. 7, 2745 (2017)

    ADS  Google Scholar 

  58. Y.R. Zhang, Y. Zeng, H. Fan, J.Q. You, F. Nori, Phys. Rev. Lett. 120, 250501 (2018)

    MathSciNet  ADS  Google Scholar 

  59. M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989)

    ADS  Google Scholar 

  60. H. Tasaki, Phys. Rev. Lett. 66, 798 (1991)

    MathSciNet  ADS  Google Scholar 

  61. H.T. Wang, B. Li, S.Y. Cho, Phys. Rev. B 87, 054402 (2013)

    ADS  Google Scholar 

  62. A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)

    MathSciNet  ADS  Google Scholar 

  63. Z.Y. Sun, H.X. Wen, M. Li, Y. Li, Phys. Rev. A 104, 052202 (2021)

    ADS  Google Scholar 

  64. H. Zou, E. Zhao, X.W. Guan, W.V. Liu, Phys. Rev. Lett. 122, 180401 (2019)

    MathSciNet  ADS  Google Scholar 

  65. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  66. T.R. de Oliveira, A. Saguia, M.S. Sarandy, EPL (Europhysics Letters) 100, 60004 (2012)

    Google Scholar 

  67. F. Altintas, R. Eryigit, Ann. Phys. 327, 3084 (2012)

    ADS  Google Scholar 

  68. R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995)

    MathSciNet  ADS  Google Scholar 

  69. N.D. Mermin, Phys. Rev. Lett. 65, 1838 (1990)

    MathSciNet  ADS  Google Scholar 

  70. A.V. Belinskiǐ, D.N. Klyshko, Physics-Uspekhi 36, 653 (1993)

    ADS  Google Scholar 

  71. V. Scarani, N. Gisin, J. Phys. A 34, 6043 (2001)

    MathSciNet  ADS  Google Scholar 

  72. K.R.A. Hazzard, B. Gadway, M. Foss-Feig, B. Yan, S.A. Moses, J.P. Covey, N.Y. Yao, M.D. Lukin, J. Ye, D.S. Jin et al., Phys. Rev. Lett. 113, 195302 (2014)

    ADS  Google Scholar 

  73. Z.M.S.K.D.e.a. Yao, N.Y., Nat. Phys. 14, 405 (2018)

  74. H. Ueda, S. Onoda, Phys. Rev. B 89, 024407 (2014)

    ADS  Google Scholar 

  75. I.P. McCulloch, M. Gulácsi, Europhys. Lett. (EPL) 57, 852 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Ian McCulloch for his great software Matrix-Product Toolkit. The research was supported by the National Natural Science Foundation of China (Grant Nos. 11675124 and 12105210).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zhao-Yu Sun.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, HX., Sun, ZY., Cheng, HG. et al. Multipartite nonlocality and topological quantum phase transitions in a spin-1/2 XXZ model on a zigzag lattice. Eur. Phys. J. B 95, 148 (2022). https://doi.org/10.1140/epjb/s10051-022-00416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00416-8

Navigation