Skip to main content
Log in

Effect of hydrostatic pressure on the structural, mechanical, vibrational and electronic properties of the solid solution W1−xTaxB3

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The mechanical and electronic properties were investigated in the W1−xTaxB3 solid solution with concentrations x = 0.00, 0.25, 0.50, 0.75 and 1.00 under hydrostatic pressure. The mechanical stability of the materials is discussed through the analysis of its elastic constants and the bulk (B), shear (G), Young (E) moduli and Vickers hardness (Hv) moduli. It is shown, for high concentrations, that the mechanical behavior tends into a major ductility character compared with the WB3 compound (x = 0.00). Moreover, the enhancement in hardness and the mechanical properties for low concentrations of Ta is proposed to be understood in terms of the charge distribution described by calculation of the partial density of electronic states (PDOS), correlating well with previous experimental results. The phonon density of states of the WB3 and TaB3 compounds showed no imaginary phonon frequencies in the entire Brillouin zone; therefore, are dynamically stable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Haines, J.M. Léger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1–23 (2001). https://doi.org/10.1146/annurev.matsci.31.1.1

    Article  ADS  Google Scholar 

  2. V.V. Brazhkin, A.G. Lyapin, R.J. Hemley, Philos. Mag. A 82(2), 231–253 (2002). https://doi.org/10.1080/01418610208239596

    Article  ADS  Google Scholar 

  3. R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308(5726), 1268–1269 (2005). https://doi.org/10.1126/science.1109830

    Article  Google Scholar 

  4. A.L. Ivanovskii, J. Superhard. Mater. 33, 73–87 (2011). https://doi.org/10.3103/S1063457611020018

    Article  Google Scholar 

  5. A. Yang, Y. Duan, J. Yi, C. Li, Chem. Phys. Lett. 783, 139088 (2021). https://doi.org/10.1016/j.cplett.2021.139088

    Article  Google Scholar 

  6. A. Yang, L. Bao, M. Peng, Y. Duan, Mater. Today Commun. 27, 102474 (2021). https://doi.org/10.1016/j.mtcomm.2021.102474

    Article  Google Scholar 

  7. B. Li, Y. Duan, M. Peng, H. Qi, L. Shen, X. Wang, Vacuum 200, 110989 (2022). https://doi.org/10.1016/j.vacuum.2022.110989

    Article  ADS  Google Scholar 

  8. A. Yang, Y. Duan, C. Li, J. Yi, M. Peng, Intermetallics 141, 107437 (2022). https://doi.org/10.1016/j.intermet.2021.107437

    Article  Google Scholar 

  9. R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 127, 7264–7265 (2005). https://doi.org/10.1021/ja043806y

    Article  Google Scholar 

  10. H.-Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.-M. Yang, S.H. Tolbert, R.B. Kaner, Science 316(5823), 436–439 (2007). https://doi.org/10.1126/science.1139322

    Article  ADS  Google Scholar 

  11. W. Zhou, H. Wu, T. Yildirim, Phys. Rev. B 76, 184113 (2007). https://doi.org/10.1103/PhysRevB.76.184113

    Article  ADS  Google Scholar 

  12. R. Mohammadi, A.T. Lech, M. Xie, B.E. Weaver, M.T. Yeung, S.H. Tolbert, R.B. Kaner, PNAS 108(27), 10958–10962 (2011). https://doi.org/10.1073/pnas.1102636108

    Article  ADS  Google Scholar 

  13. Q. Tao, D. Zheng, X. Zhao, Y. Chen, Q. Li, Q. Li, C. Wang, T. Cui, Y. Ma, X. Wang, P. Zhu, Chem. Mater. 26(18), 5297–5302 (2014). https://doi.org/10.1021/cm5021806

    Article  Google Scholar 

  14. Q. Wang, J. He, Hu. Wentao, Z. Zhao, C. Zhang, K. Luo, Lu. Yifei, C. Hao, Lu. Weiming, Z. Liu, Yu. Dongli, Y. Tian, Xu. Bo, J. Materiomics 1, 45–51 (2015). https://doi.org/10.1016/j.jmat.2015.03.004

    Article  Google Scholar 

  15. A. Knappschneider, C. Litterscheid, J. Brgoch, N.C. George, S. Henke, A.K. Cheetham, J.G. Hu, R. Seshadri, B. Albert, Chem. Eur. J. 21, 8177–8181 (2015). https://doi.org/10.1002/chem.201406631

    Article  Google Scholar 

  16. S. Ma, K. Bao, Q. Tao, P. Zhu, T. Ma, Bo. Liu, Y. Liu, T. Cui, Sci. Rep. 7, 43759 (2017). https://doi.org/10.1038/srep43759

    Article  ADS  Google Scholar 

  17. Wu. Lailei, B. Wan, Y. Zhao, Y. Zhang, H. Liu, Y. Wang, J. Zhang, H. Gou, J. Phys. Chem. C 119, 21649–21657 (2015). https://doi.org/10.1021/acs.jpcc.5b06721

    Article  Google Scholar 

  18. G. Zhang, T. Bai, Y. Zhao, Hu. Yanfei, Materials 9, 703 (2016). https://doi.org/10.3390/ma9080703

    Article  ADS  Google Scholar 

  19. X. Zhang, X. Bai, E. Zhao, Wu. Zhijian, Fu. Lei, Q. Hou, Comput. Condens. Matter 3, 53–60 (2015). https://doi.org/10.1016/j.cocom.2015.03.001

    Article  Google Scholar 

  20. S. Wei, Da. Li, Y. Lv, Z. Liu, Xu. Chunhong, F. Tian, D. Duan, B. Liu, T. Cui, Phys. Chem. Chem. Phys. 18, 18074 (2016). https://doi.org/10.1039/c6cp01649a

    Article  Google Scholar 

  21. X. Li, Du. Junyi, RSC Adv. 6, 49214 (2016). https://doi.org/10.1039/c6ra05162f

    Article  ADS  Google Scholar 

  22. X. Miao, W. Xing, F. Meng, Yu. Rong, Solid State Commun. 252, 40–45 (2017). https://doi.org/10.1016/j.ssc.2017.01.012

    Article  ADS  Google Scholar 

  23. Y. Sun, A. Yang, Y. Duan, Li. Shen, M. Pen, H. Qi, Int. J. Refract. Met. Hard Mater. 103, 105781 (2022). https://doi.org/10.1016/j.ijrmhm.2022.105781

    Article  Google Scholar 

  24. I. Zeiringer, P. Rogl, A. Grytsiv, J. Polt, E. Bauer, G. Giester, J. Phase Equilib. Diffus. 35, 384–395 (2014). https://doi.org/10.1007/s11669-014-0291-0

    Article  Google Scholar 

  25. J. León-Flores, J. Rosas-Huerta, M. Romero, J.L. Pérez-Mazariego, R. Gómez, J.A. Arenas-Alatorre, R. Escamilla, Physica B 583, 412026 (2020). https://doi.org/10.1016/j.physb.2020.412026

    Article  Google Scholar 

  26. J. Dong, H. Li, J. Wang, Z. Guo, J. Liao, X. Hao, X. Zhang, X. Dongliang, Chen. J. Phys. Chem. C 123(48), 29314–29323 (2019). https://doi.org/10.1021/acs.jpcc.9b08621

    Article  Google Scholar 

  27. J.W. Simonson, D. Wu, S.J. Poon, S.A. Wolf, J. Supercond. Nov. Magn. 23, 417–422 (2010). https://doi.org/10.1007/s10948-009-0593-3

    Article  Google Scholar 

  28. R. Mohammadi, M. Xie, A.T. Lech, C.L. Turner, A. Kavner, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 134, 20660–20668 (2012). https://doi.org/10.1021/ja308219r

    Article  Google Scholar 

  29. C. Ying, X. Bai, Y. Du, E. Zhao, L. Lin, Q. Hou, Int. J. Mod. Phys. B 20, 1650131 (2016). https://doi.org/10.1142/S0217979216501319

    Article  Google Scholar 

  30. T.L. ChunYing, L. Lin, E. Zhao, Q. Hou, Comput. Mater. Sci. 144, 154–160 (2018). https://doi.org/10.1016/j.commatsci.2017.12.023

    Article  Google Scholar 

  31. J. León-Flores, M. Romero, J.L. Rosas, R. Escamilla, Eur. Phys. J. B 92, 26 (2019). https://doi.org/10.1140/epjb/e2018-90669-3

    Article  ADS  Google Scholar 

  32. J. León-Flores, M. Romero, J. Rosas-Huerta, R. Escamilla, MRS Adv. 4(63), 3453–3461 (2022). https://doi.org/10.1557/adv.2019.420

    Article  Google Scholar 

  33. Z. Guo, X. Yang, Mater. Res. Express 6, 115034 (2019). https://doi.org/10.1088/2053-1591/ab45b1

    Article  ADS  Google Scholar 

  34. L. Xiong, J. Liu, L. Bai, C. Lin, D. He, X. Zhang, J.-F. Lin, J. Alloys Compd. 621, 116–120 (2015). https://doi.org/10.1016/j.jallcom.2014.09.076

    Article  Google Scholar 

  35. L. Xiong, K. Fan, J. Zhu, J. Hao, Wu. Shiyun, L. Bai, X. Li, J. Liu, X. Zhang, Q. Tao, P. Zhu, High Press Res. 37(3), 334–344 (2017). https://doi.org/10.1080/08957959.2017.1340472

    Article  ADS  Google Scholar 

  36. J. León-Flores, M. Romero, J.L. Rosas-Huerta, J. Eugenio Antonio, R. Escamilla, Eur. Phys. J. B. 93, 178 (2020). https://doi.org/10.1140/epjb/e2020-10187-1

    Article  ADS  Google Scholar 

  37. Y. Wang, Wu. Ying, Lu. Yaoping, X. Wang, Y. Duan, M. Peng, Vacuum 196, 110731 (2022). https://doi.org/10.1016/j.vacuum.2021.110731

    Article  ADS  Google Scholar 

  38. A. Yang, Y. Duan, M. Peng, Mater. Today Commun. 30, 103187 (2022). https://doi.org/10.1016/j.mtcomm.2022.103187

    Article  Google Scholar 

  39. A. Yang, Y. Duan, M. Peng, Li. Shen, H. Qi, Appl. Phys. A 128, 152 (2022). https://doi.org/10.1007/s00339-022-05299-1

    Article  ADS  Google Scholar 

  40. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  41. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  42. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.J. Payne, Phys. Condens. Matter 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Article  ADS  Google Scholar 

  43. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  ADS  Google Scholar 

  44. D. Vanderbilt, Phys. Rev. B 41, 7892–7895 (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Article  ADS  Google Scholar 

  45. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  46. N. Lothar, Zur Elektronentheorie der Metalle. I. Ann. Phys. 401, 607 (1931). https://doi.org/10.1002/andp.19314010507

    Article  MATH  Google Scholar 

  47. L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61, 7877–7882 (2000). https://doi.org/10.1103/PhysRevB.61.7877

    Article  ADS  Google Scholar 

  48. M.A. Ali, M.M. Hossain, M.A. Hossain, M.T. Nasir, M.M. Uddin, M.Z. Hasan, A.K.M.A. Islam, S.H. Naqib, J. Alloys Compd. 743, 146–154 (2018). https://doi.org/10.1016/j.jallcom.2018.01.396

    Article  Google Scholar 

  49. D. Liu, W. Bao, Y. Duan, Ceram. Int. 45(3), 3341–3349 (2019). https://doi.org/10.1016/j.ceramint.2018.10.247

    Article  Google Scholar 

  50. M. Born, K. Hang, Dynamical theory and experiments I (Springer, Berlin, 1982)

    Google Scholar 

  51. W. Voigt, Lehrbuch der Kristallphysik (Tubner, Leipzing, 1928)

  52. A. Reuss, J. App. Math. Mech. 9, 49 (1929). https://doi.org/10.1002/zamm.19290090104

    Article  Google Scholar 

  53. R. Hill, Proc. Phys. Soc. 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  54. M. Romero, R. Escamilla, Comput. Mater. Sci. 81, 184 (2014). https://doi.org/10.1016/j.commatsci.2013.08.010

    Article  Google Scholar 

  55. H. Niu, S. Niu, A.R. Organov, J. Appl. Phys. 125, 065105 (2019). https://doi.org/10.1063/1.5066311

    Article  ADS  Google Scholar 

  56. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.021

    Article  Google Scholar 

  57. M.H. Ledbetter, J. Phys. Chem. Ref. Data 6, 1181 (1977). https://doi.org/10.1063/1.555564

    Article  ADS  Google Scholar 

  58. M. Levy, Exp. Methods Phys. Sci. 39, 1–15 (2001). https://doi.org/10.1016/S1079-4042(01)80084-9

    Article  Google Scholar 

  59. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  Google Scholar 

  60. P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Phys. Rev. B. 63, 045115 (2001). https://doi.org/10.1103/PhysRevB.63.045115

    Article  ADS  Google Scholar 

  61. A. Pasturel, C. Colinet, P. Hicter, Physica B+C 132, 177–180 (1985). https://doi.org/10.1016/0378-4363(85)90062-2

    Article  ADS  Google Scholar 

  62. H. Li, Y. Gong, Z. Guo, Z. Dong, J. Liao, Q. Tao, J. Dong, D. Chen, J. Phys. Condens. Matter. 34, 035401 (2022). https://doi.org/10.1088/1361-648X/ac2caa

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by projects DGAPA-UNAM IN101421 and IN100222. J. León-Flores want to acknowledge the postdoctoral grant by CTIC-DGAPA-UNAM; J. L. Rosas-Huerta wants to acknowledge the postdoctoral grant by Dirección General de Asuntos del Personal Académico: Programa de Becas Posdoctorales UNAM; J. E. Antonio want to acknowledge support from CONACYT and BEIFI-IPN.

Author information

Authors and Affiliations

Authors

Contributions

JL-F: conceptualization, formal analysis, and writing—original draft JLR-H: validation and writing—reviewing and editing. JEA: validation and writing-reviewing and editing. MR: validation and writing—reviewing. RE: conceptualization, validation, and writing—reviewing and editing.

Corresponding author

Correspondence to J. León-Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León-Flores, J., Rosas-Huerta, J.L., Antonio, J.E. et al. Effect of hydrostatic pressure on the structural, mechanical, vibrational and electronic properties of the solid solution W1−xTaxB3. Eur. Phys. J. B 95, 85 (2022). https://doi.org/10.1140/epjb/s10051-022-00351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00351-8

Navigation