Skip to main content
Log in

The second and third harmonic generation of GaAs/Ga\(_{1-x}\)Al\(_{x}\)As spherical quantum dots under a confining potential

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The objective of this study is to theoretically discuss the impact of additional tuning factors on the second and third harmonic generation (SHG and THG) of GaAs/Ga\(_{1-x}\)Al\(_{x}\)As quantum dots (QDs) with the inversely quadratic Hellmann–Kratzer (IQHK) potential by adjusting the depth of potential and radius of the QDs. Within the formula method, the energy levels and the corresponding wave-functions are calculated by solving the Schrödinger equation. Then, the SHG and THG coefficients are deduced using the density matrix formalism with an iterative procedure. Finally, the results indicate that the additional tuning factors and structural parameters have significant effects on the peak positions and magnitudes of the calculated SHG and THG coefficients.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The all data that support the findings of this manuscript are available upon request by contacting the corresponding author.]

References

  1. K. Batra, V. Prasad, Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes. Eur. Phys. J. B 91, 298 (2018)

    Article  ADS  Google Scholar 

  2. D. Bejan, Impurity-related nonlinear optical rectification in double quantum dot under electric field. Phys. Lett. A 380, 3836–3842 (2016)

    Article  ADS  Google Scholar 

  3. I. Altuntas, Effects of applied external fields on the nonlinear optical rectification, second, and third harmonic generation in a quantum well with exponentially confinement potential. Eur. Phys. J. B 94, 177 (2021)

    Article  Google Scholar 

  4. H. Sari, E. Kasapoglu, U. Yesilgul, S. Sakiroglu, F. Ungan, I. Sökmen, Erratum to: Nonlinear optical properties of asymmetric n-type double \(\delta \)-doped GaAs quantum well under intense laser field. Eur. Phys. J. B 91, 72 (2018)

    Article  ADS  Google Scholar 

  5. C.P. Liu, K.Z. Hatsagortsyan, Coulomb focusing in above-threshold ionization in elliptically polarized midinfrared strong laser fields. Phys. Rev. A 85(2) (2012)

  6. N. Yahyaoui, A. Jbeli, N. Zeiri, S. Abdi-Ben Nasrallah, M. Said, Effect of size and composition on the third order nonlinear optical susceptibility for GaN/In\(_{x}\)Ga\(_{1-x}\)N spherical core/shell quantum dot. Optik, 245 (2021)

  7. Y.B. Yu, K.X. Guo, Exciton effects on nonlinear electro-optic effects in semi-parabolic quantum wires. Physica E 18, 492–497 (2003)

    Article  ADS  Google Scholar 

  8. W.F. Yang, R. Chen, B. Liu, L.M. Wong, S.J. Wang, H.D. Sun, Temperature dependence of weak localization effects of excitons in ZnCdO/ZnO single quantum well. J. Appl. Phys. 109(11)(2011)

  9. S.X. Mo, K.X Guo, G.H Liu, X.B He, J.Y Lan, Z.P Zhou, Exciton effect on the linear and nonlinear optical absorption coefficients and refractive index changes in Morse quantum wells with an external electric field. Thin Solid Films, 710(2020)

  10. E. Ozturk, Linear and nonlinear optical absorption coefficients and refractive index changes in double parabolic-square quantum well as dependent on intense laser field. Eur. Phys. J. Plus 130, 67 (2015)

    Article  Google Scholar 

  11. P.D. Dapkus, Metalorganic chemical vapor deposition. Annu. Rev. Mater. Sci. 12, 243–269 (1982)

    Article  ADS  Google Scholar 

  12. S.D. Hersee, J.P. Duchemin, Low-pressure chemical vapor deposition. Annu. Rev. Mater. Sci. 12, 65–80 (1982)

    Article  ADS  Google Scholar 

  13. S.I. Pokutnyi, Optical absorption by a nanosystem with dielectric quantum dots. Eur. Phys. J. Plus 135, 398 (2020)

    Article  Google Scholar 

  14. G. Rezaei, B. Vaseghi, R. Khordad, H. Azadi Kenary, Optical rectification coefficient of a two-dimensional quantum pseudodot system. Physica E: Low-dimensional Syst. Nanostruct. 43, 1853–1856 (2011)

  15. S. Dahiya, S. Lahon, R. Sharma, Effects of temperature and hydrostatic pressure on the optical rectification associated with the excitonic system in a semi-parabolic quantum dot. Physica E: Low-dimensional Syst. Nanostruct. 118 (2020)

  16. C.J. Zhang, C.P. Liu, Enhancement of second-order vortex harmonics in polar molecular media. Laser Phys. Lett. 17(8) (2020)

  17. D. Bejan, Exciton effects on the nonlinear optical properties of semiparabolic quantum dot under electric field. Eur. Phys. J. Plus, 132(102) (2017)

  18. N.D. Hien, C.A. Duque, E. Feddi, Magneto-optical effect in GaAs/GaAlAs semi-parabolic quantum well. Thin Solid Films 682, 10–17 (2019)

    Article  ADS  Google Scholar 

  19. Z.H. Zhang, K.X. Guo, B. Chen, R.Z. Wang, M.W. Kang, S. Shao, Theoretical studies on the optical absorption coefficients and refractive index changes in parabolic quantum dots in the presence of electric and magnetic fields. Superlatt. Microstruct. 47, 325–334 (2010)

    Article  ADS  Google Scholar 

  20. D.A. Baghdasaryan, E.S. Hakobyan, D.B. Hayrapetyan, H.A. Sarkisyan, E.M. Kazaryan, Nonlinear optical properties of cylindrical quantum dot with Kratzer confining potential. J. Contemp. Phys. (Armenian Acad. Sci.) 54, 46–56 (2019)

  21. V. Prasad, P. Silotia, Effect of laser radiation on optical properties of disk shaped quantum dot in magnetic fields. Phys. Lett. A 375, 3910–3915 (2011)

    Article  ADS  Google Scholar 

  22. G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot. Curr. Appl. Phys. 11, 176–181 (2011)

    Article  ADS  Google Scholar 

  23. G.H. Liu, K.X. Guo, H. Hassanabadi, L.L. Lu, Linear and nonlinear optical properties in a disk-shaped quantum dot with a parabolic potential plus a hyperbolic potential in a static magnetic field. Physica B 407, 3676–3682 (2012)

    Article  ADS  Google Scholar 

  24. R. Khordad, B. Mirhosseini, Linear and nonlinear optical properties in spherical quantum dots: Rosen-Morse potential. Opt. Spectrosc. 117, 434–440 (2014)

    Article  ADS  Google Scholar 

  25. M.C. Onyeaju, J.O.A. Idiodi, A.N. Ikot, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: generalized Hulthén potential. Few-Body Syst. 57, 793–805 (2016)

    Article  ADS  Google Scholar 

  26. L.V. Tung, V.T. Lam, L.T. Hoa, H.V. Phuc, Nonlinear magneto-optical absorption in a finite semi-parabolic quantum well. Opt. Quant. Electron. 53 (2021)

  27. X. Liu, L. Zou, C. Liu, Z.H. Zhang, J.H. Yuan, The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field. Opt. Mater. 53, 218–223 (2016)

    Article  ADS  Google Scholar 

  28. L. Máthé, C.P. Onyenegecha, A.-A. Farcaş, L.-M. Pioraş-Ţimbolmaş, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: inversely quadratic Hellmann potential. Phys. Lett. A 397 (2021)

  29. C. Berkdemir, A. Berkdemir, J. Han, Bound state solutions of the Schrödinger equation for modified Kratzers molecular potential. Chem. Phys. Lett. 417, 326–329 (2006)

    Article  ADS  Google Scholar 

  30. C.P. Onyenegecha, Khadija El Anouz, A.I. Opara, I.J. Njoku, C.J. Okereke, A. El Allati, Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties. Heliyon, 7 (2021)

  31. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Formula method for bound state problems. Few-Body Syst. 56, 63–78 (2015)

    Article  ADS  Google Scholar 

  32. C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48, 337–350 (2009)

    Article  Google Scholar 

  33. L.C. Zhang, X.C. Li, X.G. Liu, Z.R. Li, The influence of second-harmonic generation under the external electric field and magnetic field of parabolic quantum dots. Physica B: Condensed Matter 618 (2021)

  34. J.S. Li, Z.H. Zhang, Y.W. Liu, J.H. Yuan, Simultaneous effects of hydrostatic pressure, temperature and aluminum concentration on nonlinear optical rectification, second- and third-harmonic generation in a GaAs/Ga\(_{1-x}\)Al\(_{x}\)As morse quantum well. Int. J. Modern Phys. B 33(04) (2019)

  35. X.C. Li, A.M. Wang, Z.L. Wang, Y. Yang, Second-harmonic generation in asymmetric quantum dots in the presence of a static magnetic field. Chin. Phys. B 21(8), 087303 (2012)

  36. X.C. Li, C.B. Ye, J. Gao, B. Wang, Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field. Chin. Phys. B 29(08) (2020)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51702003, 61775087, 11674312, 52174161, and 12174161), the Provincial Foundation for Excellent Top Talents of Colleges and Universities of Anhui Province of China (Grant No. gxgwfx2019016), the Anhui Provincial Natural Science Foundation, China (Grant Nos. 1808085ME130 and 1508085QF140), and University Outstanding Young Talents Support Program Fund (Grant No. gxyqZD2018039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechao Li.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Li, X. The second and third harmonic generation of GaAs/Ga\(_{1-x}\)Al\(_{x}\)As spherical quantum dots under a confining potential. Eur. Phys. J. B 95, 84 (2022). https://doi.org/10.1140/epjb/s10051-022-00348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00348-3

Navigation