Skip to main content
Log in

Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The transmission and encoding of information in the brain has been the subject of much research. The aim is to improve biophysical functions and to design reliable artificial synapses for the connection of several biological neurons. In this manuscript, it is coupled through a hybrid synapse two FitzHugh–Nagumo neural circuits driven simultaneously by a phototube and a thermistor. The hybrid synapse is based on an ideal Josephson Junction in parallel with a linear resistance. This configuration allows the evaluation of the external magnetic field in the neural circuit. Using the standard scale transformation on the physical variables and parameters, we obtain the mathematical model of the coupled neurons. A bifurcation analysis on the intrinsic parameters of the coupling channel is carried out to demonstrate the complete synchronization and phase synchronization. It can be seen a synchronization stability when the parameters of the coupling channel are well defined. To practically confirm these results, an electronic circuit is designed using discrete electronic components and multipliers. Thanks to the simulations in the PSpice software, we see that this circuit can well and well be used to estimate the effect of the external magnetic field on a coupled neural circuit and predict a stable synchronization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the information’s were given in the paper to generate the results in the paper; there is no need of the deposited data.]

References

  1. Z. Aram, S. Jafari, J. Ma, J.C. Sprott, S. Zendehrouh, V.T. Pham, Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simulat. 44, 449–59 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  2. C. Borgers, An Introduction to Modeling Neuronal Dynamics, vol. 17 (Springer, Berlin, 2017)

    MATH  Google Scholar 

  3. A. Mondal, R. KumarUpadhyay, J. Ma, B.K. Yadav, S.K. Sharma, Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13, 393–407 (2017)

    Google Scholar 

  4. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500 (1952)

    Google Scholar 

  5. J.L. Hindmarsh, R.M. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    ADS  Google Scholar 

  6. J.L. Hindmarsh, R.M. Rose, A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221, 87–102 (1984)

    ADS  Google Scholar 

  7. R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1, 445–466 (1961)

    Google Scholar 

  8. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J . 35, 193–213 (1981)

    Google Scholar 

  9. T.R. Chay, Chaos in a three-variable model of an excitable cell. Phys. D. 16, 233–242 (1985)

    MATH  Google Scholar 

  10. J.J. Hopfield, Neurons with graded response have collective computational properties like those of 2-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81, 3088–3092 (1984)

    ADS  MATH  Google Scholar 

  11. H.G. Gu, B.B. Pan, G.R. Chen, L.X. Duan, Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    MathSciNet  Google Scholar 

  12. J. Ma, X. Song, J. Tang et al., Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Google Scholar 

  13. Y. Xu, Y. Jia, H. Wang et al., Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)

    MATH  Google Scholar 

  14. L. Lu, Y. Jia, J.B. Kirunda et al., Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95, 1673–1686 (2019)

    Google Scholar 

  15. M. Ge, Y. Jia, Y. Xu et al., Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MathSciNet  MATH  Google Scholar 

  16. M. Ge, Y. Jia, J.B. Kirunda et al., Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh-Rose neural network. Neurocomputing 320, 60–68 (2018)

    Google Scholar 

  17. J. Tang, J. Zhang, J. Ma et al., Noise and delay sustained chimera state in small world neuronal network. Sci. China Technol. Sci. 62, 1134–1140 (2019)

    ADS  Google Scholar 

  18. H. Zhang, Q. Wang, M. Perc et al., Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 18, 601–615 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  19. M. Dipoppa, A. Ranson, M. Krumin et al., Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 98(3), 602–615 (2018). https://doi.org/10.1016/j.neuron.2018.03.037

    Article  Google Scholar 

  20. F. Gabbiani, H.G. Krapp, C. Koch et al., Multiplicative computation in a visual neuron sensitive to looming. Nature 420(6913), 320–324 (2002). https://doi.org/10.1038/nature01190

    Article  ADS  Google Scholar 

  21. S. Peron, F. Gabbiani, Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat. Neurosci. 12(3), 318–326 (2009). https://doi.org/10.1038/nn.2259

    Article  Google Scholar 

  22. P. Heil, First-spike latency of auditory neurons revisited. Curr. Opin. Neurobiol. 14(4), 461–467 (2004). https://doi.org/10.1016/j.conb.2004.07.002

    Article  Google Scholar 

  23. C.K. Machens, H. Schütze, A. Franz et al., Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6(4), 341–342 (2003). https://doi.org/10.1038/nn1036

    Article  Google Scholar 

  24. P. Zhou, Z. Yao, J. Ma et al., A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fract. 145, 110751 (2021). https://doi.org/10.1016/j.chaos.2021.110751

    Article  MathSciNet  Google Scholar 

  25. T. Nakayama, Thermosensitive neurons in the brain. Jpn. J. Physiol. 35(3), 375–389 (1985). https://doi.org/10.2170/jjphysiol.35.375

    Article  Google Scholar 

  26. M. Ruchty, F. Roces, C.J. Kleineidam, Detection of minute temperature transients by thermosensitive neurons in ants. J. Neurophysiol. 104(3), 1249–1256 (2010). https://doi.org/10.1152/jn.00390.2010

    Article  Google Scholar 

  27. Y. Xu, M.H. Liu, Z.G. Zhu et al., Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29(9), 098704 (2020). https://doi.org/10.1088/1674-1056/ab9dee

    Article  ADS  Google Scholar 

  28. Y. Xu, Y.Y. Guo, G.D. Ren et al., Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020). https://doi.org/10.1016/j.amc.2020.125427

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Zhang, S. Jones, K. Brody et al., Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am. J. Physiol. Gastrointest. Liv. Physiol. 286(6), G983–G991 (2004). https://doi.org/10.1152/ajpgi.00441.2003

    Article  Google Scholar 

  30. L. Yong, X. Wan-jiang, M. Jun, A. Faris, H. Aatef, A new photosensitive neuron model and its dynamics. Inform. Technol. Electron. Eng, Front. (2020). https://doi.org/10.1631/FITEE.1900606

  31. T.J. Fossi, H.C. Edima, T.Z. Njitacke, K.F. Feudjio, N.R. Mballa, J. Atangana, Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Phys. J. Spec. Top. Eur. (2021). https://doi.org/10.1140/epjs/s11734-021-00311-w

  32. C. Grebogi, E. Ott, J.A. Yoke, Crises, sudden changes in chaotic attractors and transient chaos. Phys. D 7, 181–200 (1983)

    MathSciNet  MATH  Google Scholar 

  33. A. Pikovsky, G. Osipov, M. Rosenblum, M. Zaks, J. Kurths, Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 79(1), 47–50 (1997). https://doi.org/10.1103/physrevlett.79.47

    Article  ADS  Google Scholar 

  34. M. Desroches, B. Krauskopf, H.M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos Interdiscip. J. Nonlinear Sci. 18(1), 015107 (2008). https://doi.org/10.1063/1.2799471

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Abdelouahab, R. Lozi, L.O. Chua et al., Int. J. Bifur. Chaos 24, 1430023 (2014)

    Google Scholar 

  36. M. Ge, Y. Jia, Y. Xu, L. Yang, Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91(1), 515–23 (2017)

    Google Scholar 

  37. Lv. Mi, C. Wang, G. Ren, J. Ma, X. Song, Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–90 (2016)

    Google Scholar 

  38. S. Mostaghimi, F. Nazarimehr, S. Jafari, J. Ma, Chemical and electrical synapse modulated dynamical properties of coupled neurons under magnetic flow. Appl. Math. Comput. 348, 42–56 (2019)

    MathSciNet  MATH  Google Scholar 

  39. G. Ren, Y. Xu, C. Wang, Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)

    Google Scholar 

  40. C.N. Takembo, A. Mvogo, H. Ekobena, H.P. Fouda, T.C. Kofane, Localized modulated wave solution of diffusive FitzHugh-Nagumo cardiac networks under magnetic flow effect. Nonlinear Dyn. 95(2), 1079–98 (2018)

    MATH  Google Scholar 

  41. C.N. Takembo, A. Mvogo, H. Ekobena, H.P. Fouda, N. Kofane, Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor based neuronal network. Nonlinear Dyn. 95, 1067 (2019)

    MATH  Google Scholar 

  42. K. Usha, P.A. Subha, Hindmarsh-Rose neuron model with memristors. Biosystems 178, 1–9 (2019)

    MATH  Google Scholar 

  43. K.M. Wouapi, H. Fotsin, F.P. Louodop, K.F. Feudjio, T.Z. Njitacke, T.H. Djeudjo, Various firing activities and finite-time synchronization of an improved Hindmarsh-Rose neuron model under electric field effect. Cogn. Neurodyn. (2020). https://doi.org/10.1007/s11571-020-09570-0

  44. Y. Zhao, X. Sun, Y. Liu, J. Kurths, Phase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic field. Nonlinear Dyn. 93(3), 1315–1324 (2018). https://doi.org/10.1007/s11071-018-4261-7

    Article  Google Scholar 

  45. Z. Yao, J. Ma, Y. Yao et al., Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)

    MATH  Google Scholar 

  46. S.C. Lesher-Pérez, C. Zhang, S. Takayama, Capacitive coupling synchronizes autonomous microfluidic oscillators. Electrophoresis 39(8), 1096–1103 (2018)

    Google Scholar 

  47. Z. Liu, J. Ma, G. Zhang et al., Synchronization control between two Chua s circuits via capacitive coupling. Appl. Math. Comput. 360, 94–106 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Y. Xu, Z. Yao, A. Hobiny et al., Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front. Inf. Technol. Electron. Eng. 20(4), 571–583 (2019)

    Google Scholar 

  49. Y. Leng, D. Yu, Y. Hu et al., Dynamic behaviors of hyperbolic-type memristor-based Hopfield neural network considering synaptic crosstalk. Chaos 30(3), 33108 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Z. Wang, F. Parastesh, K. Rajagopal et al., Delay induced synchronization in two coupled chaotic memristive Hopfield neural networks. Chaos Soliton Fract. 134, 109702 (2020)

    MathSciNet  MATH  Google Scholar 

  51. B. Bao, Q. Yang, D. Zhu, Y. Zhang, Q. Xu, M. Chen, Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris-Lecar bi-neuron network. Nonlinear Dyn. 99(3), 2339–2354 (2019). https://doi.org/10.1007/s11071-019-05395-7

    Article  Google Scholar 

  52. H. Bao, Y. Zhang, W. Liu et al., Memristor synapse coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)

    MATH  Google Scholar 

  53. Z. Liu, C. Wang, G. Zhang et al., Synchronization between neural circuits connected by hybrid synapse. Int. J. Mod. Phys. B 33, 1950170 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  54. C. Hens, P. Pal, S.K. Dana, Bursting dynamics in a population of oscillatory and excitable Josephson junctions. Phys. Rev. E 92, 022915 (2015)

    ADS  MathSciNet  Google Scholar 

  55. T. Hongray, J. Balakrishnan, S.K. Dana, Bursting behaviour in coupled Josephson junctions. Chaos 25, 123104 (2015)

    ADS  MathSciNet  Google Scholar 

  56. K. Segall, S. Guo, P. Crotty et al., Phase-flip bifurcation in a coupled Josephson junction neuron system. Phys. B Condens. Matter. 455, 71–75 (2014)

    ADS  Google Scholar 

  57. J.M. Shainline, S.M. Buckley, R.P. Mirin et al., Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017)

    ADS  Google Scholar 

  58. R. Cheng, U.S. Goteti, M.C. Hamilton, Spiking neuron circuits using superconducting quantum phase-slip junctions. J. Appl. Phys. 124, 152126 (2018)

    ADS  Google Scholar 

  59. P. Crotty, D. Schult, K. Segall, Josephson junction simulation of neurons. Phys. Rev. E 82, 011914 (2010)

    ADS  Google Scholar 

  60. M.J.A. Diaz, O. Tequita, F. Naranjo, Neuronal synchronization of electrical activity, using the Hodgkin-Huxley model and RCLSJ circuit. Ingenieria y Ciencia 12, 93–106 (2016)

    Google Scholar 

  61. J.M. Shainline, S.M. Buckley, A.N. McCaughan et al., Circuit designs for superconducting optoelectronic loop neurons. J. Appl. Phys. 124, 152130 (2018)

    ADS  Google Scholar 

  62. J.M. Shainline, S.M. Buckley, A.N. McCaughan et al., Superconducting optoelectronic loop neurons. J. Appl. Phys. 126, 044902 (2019)

    ADS  Google Scholar 

  63. K. Segall, M. LeGro, S. Kaplan et al., Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons. Phys. Rev. E 95, 032220 (2017)

    ADS  Google Scholar 

  64. Z.T. Njitacke, I.S. Doubla, S. Mabekou, J. Kengne, Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: coexistence of patterns and its analog implementation, Chaos. Solit. Fract. 137, 109785 (2020)

    MATH  Google Scholar 

  65. Z.T. Njitacke, I.S. Doubla, J. Kengne, A. Cheukem, Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos 30, 023101 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Z. Yao, P. Zhou, Z. Zhu et al., Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing 423, 518–34 (2021)

    Google Scholar 

  67. X.F. Zhang, Wang C.N., Ma J., et al., Control and synchronization in nonlinear circuits by using a thermistor. Mod. Phys. Lett. B (2020). https://doi.org/10.1142/S021798492050267X In press

  68. Y. Zhang, C.N. Wang, J. Tang et al., Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 61, 2328–38 (2020)

    ADS  Google Scholar 

  69. A. Pikovsky, M. Rosenblum, J. Kurths, Phase synchronization in regular and chaotic systems. Int. J. Bifurc. Chaos 10(10), 2291–2305 (2000)

    MathSciNet  MATH  Google Scholar 

  70. S.Y. Ma, Z. Yao, Y. Zhang et al., Phase synchronization and lock between memristive circuits under field coupling. Int. J. Electron. Commun. (AEÜ) 105, 177–185 (2019)

    Google Scholar 

  71. B.C. Bao, H. Qian, J. Wang, Q. Xu, M. Chen, H.G. Wu, Y.J. Yu, Numerical analyses and experimental validations of coexisting multiple attractors in hopfield neural network. Nonlinear Dyn. 90(4), 2359–69 (2017)

    MathSciNet  Google Scholar 

  72. D.C. Hamill, Learning about chaotic circuits with SPICE. IEEE Trans. Educ. 36, 28–35 (1993)

    Google Scholar 

  73. C.I. Johnson, Analog Computer Techniques (Mc-GrawHill, New York, 1963)

    MATH  Google Scholar 

  74. J. Kengne, J.C. Chedjou, G. Kenne, K. Kyamakya, G.H. Kom, Analog circuit implementation and synchronization of a system consisting of a van der pol oscillator linearly coupled to a duffing oscillator. Nonlinear Dyn. 70, 2163–73 (2012)

    MathSciNet  Google Scholar 

  75. P. Louodop, H. Fotsin, M. Kountchou, L.B.M. Ngouonkadi, H.A. Cerdeira, S. Bowong, Finite-time synchronization of tunnel-diode-based chaotic oscillators. Phys. Rev. E 89, 032921 (2014)

    ADS  Google Scholar 

  76. K. Michaux, L. Patrick, B. Samuel, F. Hilaire Saïdou, analog circuit design and optimal synchronization of a modified Rayleigh system. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-2694-4

  77. M.S. Patel, U. Patel, A. Sen, G.C. Sethia, C. Hens, S.K. Dana, U. Feudel, K. Showalter, C.N. Ngonghala, R.E. Amritkar, Experimental observation of extreme multistability in an electronic system of two coupled Rossler oscillators. Phys. Rev. E 89, 022918 (2014)

    ADS  Google Scholar 

  78. V.T. Pham, S. Jafari, S. Vaidyanathan, C.K. Volos, X. Wang, A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–63 (2016)

    ADS  Google Scholar 

  79. J.D. Sitt, J. Aliaga, Versatile biologically inspired electronic. Phys. Rev. E 76, 051919 (2007)

    ADS  Google Scholar 

  80. D.H. Sheingold, Nonlinear Circuits Handbook (Analog Devices, Norwood, 1976)

    Google Scholar 

  81. X. Wu, J. Ma, L. Yuan et al., Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–26 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Jules Fossi Tagne thanks the Faculty of Sciences of the University of Ngaoundéré for its important contribution. Zeric Tabekoueng Njitacke has been supported by the Polish National Science Centre under the Grant OPUS 14 No.2017/27/B/ST8/01330.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equitably in the production and interpretation of the results and then in the writing of this manuscript.

Corresponding authors

Correspondence to Jules Tagne Fossi or Jacques Atangana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fossi, J.T., Deli, V., Edima, H.C. et al. Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction. Eur. Phys. J. B 95, 66 (2022). https://doi.org/10.1140/epjb/s10051-022-00324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00324-x

Navigation