Skip to main content
Log in

Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The memristor is a nonlinear electronic nanodevice with incredible biomimetic characteristics generally used by neurologists, more specifically in neuromorphics, to design artificial neural systems, also called memristive neuron networks. In this manuscript, a photosensitive FitzHugh–Nagumo neuron (FHN) model and a thermosensitive FHN neuron model coupled via a memristive synapse with a sinus memductance are presented. Basic traditional methods of analysis of nonlinear systems have been used to demonstrate that the coupled neurons exhibit periodic and chaotic bursting behaviors under the influence of light. Phenomena of extreme homogeneous and heterogeneous multistability can be observed when the internal memristor state variable changes periodically. It is also reported that the model can achieve phase synchronization stability as the coupling strength increases. A feedback term dependent on a dynamic state variable of the coupled neurons is introduced to switch the model from an extreme multistable state to a monostable state. This control technique eliminates all undesired patterns among the coexisting ones. Finally, electronic circuit simulations of the memristive neuron system are performed by Pspice to confirm the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used in this research work are available from the authors by reasonably request.

References

  1. Ham, D., Park, H., Hwang, S., Kim, K.: Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021)

    Google Scholar 

  2. Aram, Z., Jafari, S., Ma, J., Sprott, J.C., Zendehrouh, S., Pham, V.T.: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simulat. 44, 449–59 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Borgers, C.: An introduction to modeling neuronal dynamics. Springer International Publishing, Cham (2017)

    MATH  Google Scholar 

  4. Mondal, A., Kumar, Upadhyay R., Ma, J., Yadav, B.K., Sharma, S.K.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13, 393–407 (2017)

    Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500 (1952)

    Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Google Scholar 

  7. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221, 87–102 (1984)

    Google Scholar 

  8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Google Scholar 

  9. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  10. Izhikevich, E.M., FitzHugh, R.: Fitzhugh-nagumo model. Scholarpedia 1, 1349 (2006)

    Google Scholar 

  11. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D. 16, 233–242 (1985)

    MATH  Google Scholar 

  12. Njitacke, Z.T., Isaac, S.D., Nestor, T., Kengne, J.: Window of multistability and its control in a simple 3D hopfield neural network: application to biomedical image encryption. Neural Comput. Appl. 33, 1–20 (2020)

    Google Scholar 

  13. Njitacke, Z.T., Kengne, J., Fotsin, H.: Coexistence of multiple stable states and bursting oscillations in a 4D hopfield neural network. Circuits Syst. Signal Process 39, 3424–3444 (2020)

    MATH  Google Scholar 

  14. Xu, Q., Liu, T., Feng, C.-T., Bao, H., Wu, H.-G., Bao, B.-C.: Continuous non-autonomous memristive Rulkov model with extreme multistability. Chin. Phys. B (2021). https://doi.org/10.1088/1674-1056/ac2f30

    Article  Google Scholar 

  15. Zhang, S., Zheng, J., Wang, X., Zeng, Z.: A novel noequilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos Solitons Fractals 145, 110761 (2021)

    MATH  Google Scholar 

  16. Ngouonkadi, E.M., Fotsin, H., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended hindmarsh-rose neuronal oscillator. Chaos Solitons Fractals 85, 151–163 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Hou, Z., Ma, J., Zhan, X., Yang, L., Jia, Y.: Estimate the electrical activity in a neuron under depolarization field. Chaos Solitons Fractals 142, 110522 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Kafraj, M.S., Parastesh, F., Jafari, S.: Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals 137, 109782 (2020)

    MathSciNet  Google Scholar 

  19. Njitacke, Z.T., Doubla, I.S., Mabekou, S., Kengne, J.: Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: coexistence of patterns and its analog implementation. Chaos Solitons Fractals 137, 109785 (2020)

    MathSciNet  Google Scholar 

  20. Bao, H., Zhang, Y., Liu, W., et al.: Memristor synapse coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)

    MATH  Google Scholar 

  21. Leng, Y., Yu, D., Hu, Y., et al.: Dynamic behaviors of hyperbolic-type memristor-based hopfield neural network considering synaptic crosstalk. Chaos 30(3), 33108 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Bao, H., Hu, A., Liu, W., Bao, B.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2020)

    Google Scholar 

  23. Liu, Y., Xu, WJu., Ma, J., Alzahrani, F., Hobiny, A.: A new photosensitive neuron model and its dynamics. Front Inf. Technol. Electron. Eng. 21, 1387–1396 (2020)

    Google Scholar 

  24. Xu, Y., Guo, Y., Ren, G., Ma, J.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Guo, Y., Zhou, P., Yao, Z., Ma, J.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Google Scholar 

  26. Gu, H.G., Pan, B.B., Chen, G.R., Duan, L.X.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    MathSciNet  Google Scholar 

  27. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Google Scholar 

  28. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  29. Zha, J., Huang, H., Liu, Y.: A novel window function for memristor model with application in programming analog circuits. IEEE Trans. Cir. Sys. II Brief Pap. 63(5), 423–427 (2016)

    Google Scholar 

  30. Zhang, Y., Wang, X., Li, Y., Friedman, E.G.: Memristive model for synaptic circuits. IEEE Trans. Cir. Sys. II Brief Pap. 64(7), 767–771 (2017)

    Google Scholar 

  31. Zhang, X., Wang, W., Liu, Q., et al.: An artificial neuron based on a threshold witching memristor. IEEE Electron. Device Lett. 39(2), 308–311 (2018)

    Google Scholar 

  32. Usha, K., Subha, P.A.: Hindmarsh-Rose neuron model with memristors. BioSystems 178, 1–9 (2019)

    MATH  Google Scholar 

  33. Tan, Y., Wang, C.: A simple locally active memristor and its application in HR neurons. Chaos 30(5), 053118 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Hu, B., Guan, Z.H., Xiong, N., et al.: Intelligent impulsive synchronization of nonlinear interconnected neural networks for image protection. IEEE Trans. Ind. Inf. 14(8), 3775–3787 (2018)

    Google Scholar 

  35. Chua, L.O.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Google Scholar 

  36. Chua, L.O.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)

    Google Scholar 

  37. Bao, H., Wang, N., Bao, B., et al.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic Jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264–275 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge analysis of two-memristor-based Chuas circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020)

    Google Scholar 

  39. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Google Scholar 

  40. Baran, A.Y., Korkmaz, N., Öztürk, I., Kılıç, R.: On addressing the similarities between STDP concept and synaptic/memristive coupled neurons by realizing of the memristive synapse based HR neurons. Eng. Sci. Technol. Int. J. (2021). https://doi.org/10.1016/j.jestch.2021.09.008

    Article  Google Scholar 

  41. Jin, P., Wang, G., Iu, H.H., Fernando, T.: A locally active memristor and its application in a chaotic circuit. IEEE Trans. Circuits Syst. II Exp. Briefs 65(2), 246–250 (2017)

    Google Scholar 

  42. Chang, H., Wang, Z., Li, Y., Chen, G.: Dynamic analysis of a bistable bi-local active memristor and its associated oscillator system. Int. J. Bifurc. Chaos 28(8), 1850105 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Ascoli, A., Slesazeck, S., Mahne, H., Tetzlaff, R., Mikolajick, T.: Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Reg. Pap. 62(4), 1165–1174 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Marco, M.D., Forti, M., Pancioni, L.: Convergence and multistability of nonsymmetric cellular neural networks with memristors. IEEE Trans. Syst. Man Cybern. Syst. 47(10), 2970–2983 (2017)

    Google Scholar 

  45. Bao, H., Chen, M., Wu, H., Bao, B.: Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci. China Technol. Sci. 63(4), 603–613 (2020)

    Google Scholar 

  46. Lai, Q., Akgul, A., Zhao, X.W., Pei, H.: Various types of coexisting attractors in a new 4D autonomous chaotic system. Int. J. Bifurc. Chaos 27(9), 1750142 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, X., Wang, C., Yao, W., Lin, H.: Chaotic system with bondorbital attractors. Nonlinear Dyn. 97(4), 2159–2174 (2019)

    MATH  Google Scholar 

  48. Chen, M., Ren, X., Wu, H., et al.: Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front. Inform. Technol. Elect. Eng. 20(12), 1706–1716 (2019)

    Google Scholar 

  49. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05687-3

    Article  Google Scholar 

  50. Bao, B.C., Qian, H., Wang, J., Xu, Q., Chen, M., Wu, H.G., Yu, Y.J.: Numerical analyses and experimental validations of coexisting multiple attractors in hopfield neural network. Nonlinear Dyn. 90(4), 2359–69 (2017)

    MathSciNet  Google Scholar 

  51. Chen, C., Chen, J., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    MATH  Google Scholar 

  52. Lin, H., Wang, C., Hong, Q., et al.: A multi-stable memristor and its application in a neural network. IEEE Trans. Cir. Sys. II Brief Pap. 67(12), 3472–3476 (2020)

    Google Scholar 

  53. Wang, C., Xiong, L., Sun, J., Yao, W.: Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn. 95(4), 2893–2906 (2019)

    Google Scholar 

  54. Mannan, Z.I., Adhikari, S.P., Yang, C., Budhathoki, R.K., Kim, H., Chua, L.: Memristive imitation of synaptic transmission and plasticity. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3458–3470 (2019)

    Google Scholar 

  55. Machens, C.K., Schütze, H., Franz, A., et al.: Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6(4), 341–342 (2003). https://doi.org/10.1038/nn1036

    Article  Google Scholar 

  56. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fractals 145, 110751 (2021). https://doi.org/10.1016/j.chaos.2021.110751

    Article  MathSciNet  MATH  Google Scholar 

  57. Dipoppa, M., Ranson, A., Krumin, M., et al.: Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 98(3), 602–615 (2018). https://doi.org/10.1016/j.neuron.2018.03.037

    Article  Google Scholar 

  58. Gabbiani, F., Krapp, H.G., Koch, C., et al.: Multiplicative computation in a visual neuron sensitive to looming. Nature 420(6913), 320–324 (2002). https://doi.org/10.1038/nature01190

    Article  Google Scholar 

  59. Nakayama, T.: Thermosensitive neurons in the brain. Jpn. J. Phys. 35(3), 375–389 (1985). https://doi.org/10.2170/jjphysiol.35.375

    Article  Google Scholar 

  60. Ruchty, M., Roces, F., Kleineidam, C.J.: Detection of minute temperature transients by thermosensitive neurons in ants. J. Neurophys. 104(3), 1249–1256 (2010). https://doi.org/10.1152/jn.00390.2010

    Article  Google Scholar 

  61. Li, K., Bao, H., Li, H., et al.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inf. (2021). https://doi.org/10.1109/TII.2021.3086819

    Article  Google Scholar 

  62. Fossi, T.J., Edima, H.C., Njitacke, T.Z., Feudjio, K.F., Mballa, N.R., Atangana, J.: Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00311-w

    Article  Google Scholar 

  63. Panahi, S., Aram, Z., Jafari, S., Ma, M., Sprott, J.C.: Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105, 150–6 (2017)

    MathSciNet  Google Scholar 

  64. Njitacke, Z.T., Kengne, J., Fotsin, H.B.: A plethora of behaviors in a memristor based hopfield neural networks (HNNs). Int. J. Dyn. Control 7(1), 36–52 (2018)

    MathSciNet  Google Scholar 

  65. Kiran, Y., Neeraj, K.K., Manish, D.S.: Intermittent feedback induces attractor selection. Phys. Rev. E 95, 042215 (2017)

    MathSciNet  Google Scholar 

  66. Hamill, D.C.: Learning about chaotic circuits with SPICE. IEEE Trans. Educ. 36, 28–35 (1993)

    Google Scholar 

  67. Johnson, C.I.: Analog computer techniques. Mc-GrawHill, New York (1963)

    MATH  Google Scholar 

  68. Kengne, J., Chedjou, J.C., Kenne, G., Kyamakya, K., Kom, G.H.: Analog circuit implementation and synchronization of a system consisting of a van der pol oscillator linearly coupled to a duffing oscillator. Nonlinear Dyn. 70, 2163–73 (2012)

    MathSciNet  Google Scholar 

  69. Sitt, J.D., Aliaga, J.: Versatile biologically inspired electronic. Phys. Rev. E 76, 051919 (2007)

    Google Scholar 

  70. Wu, X., Ma, J., Yuan, L., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–26 (2014)

    MathSciNet  Google Scholar 

  71. Njitacke, Z.T., Doubla, I.S., Kengne, J., Cheukem, A.: Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. Chaos 30, 023101 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Jules Fossi Tagne thanks the Faculty of Sciences of the University of Ngaoundéré for its important contribution. Zeric Tabekoueng Njitacke has been supported by the Polish National Science Centre under the Grant OPUS 14 No.2017/27/B/ST8/01330.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equitably in the production and interpretation of the results and then in the writing of this manuscript.

Corresponding authors

Correspondence to Jules Tagne Fossi or Jacques Atangana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fossi, J.T., Deli, V., Njitacke, Z.T. et al. Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn 109, 925–942 (2022). https://doi.org/10.1007/s11071-022-07489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07489-1

Keywords

Navigation