Skip to main content
Log in

Spectrum of collective vibrations of vortex domain walls in a ferromagnetic nanostripe array

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A problem of the spectrum of the collective periodic motion of vortex domain walls in a system of parallel ferromagnetic nanostripe is theoretically solved. The magnetic subsystems of stripes are coupled by the magnetostatic interaction. The effect of the distribution of vortex core polarities and chiralities on the character of periodic motion and the spectrum of collective modes of the nanostripe magnetization is discussed. Analytical expressions for the dispersion law and damping parameter of the collective periodic motion of vortex domain walls are obtained.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We can provide data on reasonable request, Numerical methods were used as a tool to verify the exact solutions and the data is anyway displayed as plots and tables clearly in this paper].

References

  1. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190–194 (2008)

    Article  ADS  Google Scholar 

  2. B.W. Walker, C. Cui, F. Garcia-Sanchez, J.A.C. Incorvia, X. Hu, J.S. Friedman, (arXiv:210302724v2 [cond-mat.mes-hall] 5 Mar 2021)

  3. M. Takahashi, N. Nakatani, K. Ogura, N. Ishii, Y. Miyamoto, IEEE Trans. Magn. (2021). https://doi.org/10.1109/TMAG.2021.3117041

    Article  Google Scholar 

  4. R. Chen, V.F. Yu Li, C.M. Pavlidis, Phys. Rev. Res. 2, 043312 (2020)

    Article  Google Scholar 

  5. K.Y. Guslienko, J. Magn. 24(4), 549–567 (2019)

    Article  Google Scholar 

  6. A.G. Kozlov, M.E. Stebliy, A.V. Ognev, A.S. Samardak, A.V. Davydenko, L.A. Chebotkevich, J. Magn. Magn. Mater. 422, 452–457 (2017)

    Article  ADS  Google Scholar 

  7. A.G. Kozlov, M.E. Stebliy, A.V. Ognev, A.S. Samardak, L.A. Chebotkevich, IEEE Trans. Magn 51(11), 2301604 (2015)

    Article  Google Scholar 

  8. I. Purnama, M.C. Sekhar, S. Goolaup, W.S. Lew, Appl. Phys. Lett. 99, 152501 (2011)

    Article  ADS  Google Scholar 

  9. S. Krishnia, I. Purnama, W.S. Lew, Appl. Phys. Lett. 105, 042404 (2014)

    Article  ADS  Google Scholar 

  10. O. Iglesias-Freire, M. Jaafar, L. Perez, O. de Abril, M. Vazquez, A. Asenjo, J. Magn. Magn. Mater. 355, 152–157 (2014)

    Article  ADS  Google Scholar 

  11. L. OBrien, E.R. Lewis, A. Fernandez-Pacheco, D. Petit, R.P. Cowburn, Phys. Rev. Lett. 108, 187202 (2012)

    Article  ADS  Google Scholar 

  12. A.T. Galkiewicz, L. OBrien, P.S. Keatley, R.P. Cowburn, P.A. Crowell, Phys. Rev. B 90, 024420 (2014)

    Article  ADS  Google Scholar 

  13. J.-Y. Lee, K.-S. Lee, S. Choi, K.Y. Guslienko, S.-K. Kim, Phys. Rev. B 76, 184408 (2007)

    Article  ADS  Google Scholar 

  14. O.A. Tretiakov, D. Clarke, G.-W. Chern, Ya.. B. Bazaliy, O. Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008)

    Article  ADS  Google Scholar 

  15. KYu. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008)

    Article  Google Scholar 

  16. H. Youk, G.-W. Chern, K. Merit, B. Oppenheimer, O. Tchernyshyov, J. Appl. Phys. 99, 08B101 (2006)

    Article  Google Scholar 

  17. R.D. McMichael, M.J. Donahue, IEEE Trans. Magn. 33(5), 4167–4169 (1997)

    Article  ADS  Google Scholar 

  18. N. Rougemaille, V. Uhlir, O. Fruchart, S. Pizzini, J. Vogel, J.C. Toussaint, Appl. Phys. Lett. 100, 172404 (2012)

    Article  ADS  Google Scholar 

  19. A. Thiaville, Y. Nakatani, Appl. Phys. 101, 161–205 (2006)

    Article  Google Scholar 

  20. S. Jamet, N. Rougemaille, J.C. Toussaint, O. Fruchart, 25-Head-to-head domain walls in one-dimensional nanostructures: an extended phase diagram ranging from strips to cylindrical wires, in Woodhead Publishing Series in Electronic and Optical Materials, Magnetic Nano- and Microwires. ed. by M. Vazquez (Woodhead Publishing, Sawston, 2015), pp. 783–811. (ISBN 9780081001646)

    Google Scholar 

  21. K. Ito, N. Rougemaille, S. Pizzini, S. Honda, N. Ota, T. Suemasu, O. Fruchart, J. Appl. Phys. 121, 243904 (2017)

    Article  ADS  Google Scholar 

  22. V.D. Nguyen, O. Fruchart, S. Pizzini, J. Vogel, J.-C. Toussaint, N. Rougemaille, Sci. Rep. 5, 12417 (2015). https://doi.org/10.1038/srep12417

    Article  ADS  Google Scholar 

  23. V. A. Orlov, A. A. Ivanov, I. N. Orlova, Phys. Status Solidi B, 1900113 (2019). https://doi.org/10.1002/pssb.201900113

  24. R.C. Silva, R.L. Silva, V.L. Carvalho-Santos, W.A. Moura-Melo, A.R. Pereira, (arXiv:210904232v1 [cond-mat.mes-hall] 9 Sep 2021)

  25. A. Thiele, Phys. Rev. Lett. 30, 230 (1973)

    Article  ADS  Google Scholar 

  26. K.Y. Guslienko, J.-Y. Lee, S.-K. Kim, IEEE Trans. Magn. 44, 3079 (2008)

  27. B.A. Ivanov, G.G. Avanesyan, A.V. Khvalkovskiy, N.E. Kulagin, C.E. Zaspe, K.A. Zvezdin, JETP Lett. 91, 178–182 (2010)

    Article  ADS  Google Scholar 

  28. P.D. Kim, V.A. Orlov, V.S. Prokopenko, S.S. Zamai, V.Y. Prints, R.Y. Rudenko, T.V. Rudenko, Phys. Solid State 57(1), 30–37 (2015)

    Article  ADS  Google Scholar 

  29. F.G. Mertens, H.J. Schnitzer, A.R. Bishop, Phys. Rev. B 56(5), 2510–2520 (1997)

    Article  ADS  Google Scholar 

  30. T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)

    Article  ADS  Google Scholar 

  31. KYu. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Phys. Rev. B 65, 024414 (2001)

    Article  ADS  Google Scholar 

  32. V.A. Orlov, Yu. Rudenko, V.S. Prokopenko, I.N. Orlova, J. Sib. Fed. Univ. Math. Phys. 14(5), 611–623 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The study was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation, theme no. FSRZ-2020-0011.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Vitaly A. Orlov.

Appendix A

Appendix A

In the projections onto the coordinate axes for Eq. (6), we have

$$\begin{aligned} \begin{array}{ll} -Gv_y &{}+D v_x+\sum \limits _n\kappa _{x_n}(x-x_n)=F_{H_x}, \\ Gv_x &{}+D v_y+\sum \limits _n\kappa _{y_n}(y-y_n)+\chi y=F_{H_y}. \end{array} \end{aligned}$$
(A.1)

After simple transformations, system of Eq. (A.1) for the x and y components can be reduced to a single equation, e.g., for the x component. To do that, we multiple the upper equation by \(\varrho \) and the lower equation, by G and summate them. Thus, we arrive at

$$\begin{aligned}&\left( G^2+D^2\right) v_x +\sum \limits _n\left[ G\kappa _{y_n}(y-y_n) +D\kappa _{x_n}(x-x_n)\right] \nonumber \\&\quad +G\chi y=GF_{H_y}+D F_{H_x}. \end{aligned}$$
(A.2)

Next, we take the time derivative of both sides of this equation and substitute \(v_y\) expressed from upper Eq. (A.1) into it. As a result, we obtain the differential equation containing the core coordinate x as the only unknown function:

$$\begin{aligned}&\left( G^2+D^2\right) \frac{{\text {d}}v_x}{{\text {d}}t} +Dv_x\left( \chi +\sum \limits _n\left( \kappa _{y_n}+\kappa _{x_n}\right) \right) \nonumber \\&\quad -D\sum \limits _n\left( v_{x_n}\left( \kappa _{x_n}+\kappa _{y_n}\frac{G}{G_n}\right) \right) \nonumber \\&\quad +\left( \chi +\sum \limits _n\kappa _{y_n}\right) \sum \limits _n\left( \kappa _{x_n}\left( x-x_n\right) \right) \nonumber \\&\quad -\sum \limits _n\left[ \kappa _{y_n}\frac{G}{G_n}\sum \limits _{m\ne n }\kappa _{x_m}(x_n-x_m)\right] \nonumber \\&= -G\frac{dF_{H_y}}{{\text {d}}t}+D\frac{{\text {d}}F_{H_x}}{{\text {d}}t}\nonumber \\&\quad +F_{H_x}\left( \chi +\sum \limits _n\kappa _{y_n}\left( 1-\frac{G}{G_n}\right) \right) . \end{aligned}$$
(A.3)

An efficient technique for solving Eq. (A.3) is the complex variable method. Let the time dependence of the external magnetic field be described by a harmonic function varying at frequency \(\omega \): \(F_{H_x}=0\), \(F_{H_y}=F_0e^{-i\left( \omega t+\varphi \right) }\)). Then, as a trial solution for the steady regime, we choose

$$\begin{aligned} x_n(t)=x_0e^{i\left( \omega t-kn\right) }. \end{aligned}$$
(A.4)

Here, \(x_0\) is the complex amplitude, k is the wavenumber, and i is the imaginary uni.

Substituting the solution of (A.4) into (A.3), we obtain the simple equation for unknown amplitude \(x_0\)

$$\begin{aligned} x_0\left( A\omega ^2-2i\omega B+C\right) =f. \end{aligned}$$
(A.5)

Here, for brevity, we introduced the designations

$$\begin{aligned} f= & {} -i\omega GF_0e^{-i\varphi }, \nonumber \\ A= & {} -\left( G^2+D^2\right) , \nonumber \\ B= & {} \frac{1}{2}D\left( \chi +4\sum \limits _{n>0}\kappa _{x_n}\sin ^2\left( \frac{kn}{2}\right) \right. \nonumber \\&\left. + 2\sum \limits _{n>0}\kappa _{y_n}\left( 1-\frac{G}{G_n}\cos \left( kn\right) \right) \right) , \nonumber \\ C= & {} 4\left( \sum \limits _{n>0}\kappa _{x_n}\sin ^2\left( \frac{kn}{2}\right) \right) \left( \chi \right. \nonumber \\&\left. +2\sum \limits _{n>0}\kappa _{y_n}\left( 1-\frac{G}{G_n}\cos \left( kn\right) \right) \right) , \end{aligned}$$
(A.6)

and used the fact that the quasi-elasticity coefficients \(\kappa _x\) and \(\kappa _y\) depend not on a specific number of an array element, but on the distance of this element from the isolated stripe for which the equation of motion is written. The same is valid for the ratio \(G/G_n\).

For the absolute value of the amplitude, from Eq. (A.5) we obtain

$$\begin{aligned} |x_0|=\frac{\omega G}{\sqrt{\left( A\omega ^2+C\right) ^2+4B^2\omega ^2}}. \end{aligned}$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.A., Patrin, G.S. & Orlova, I.N. Spectrum of collective vibrations of vortex domain walls in a ferromagnetic nanostripe array. Eur. Phys. J. B 95, 52 (2022). https://doi.org/10.1140/epjb/s10051-022-00315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00315-y

Navigation