Skip to main content
Log in

Thermodynamics of the independent harmonic oscillators with different frequencies in the Tsallis statistics in the high physical temperature approximation

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the thermodynamic quantities in the system of the N independent harmonic oscillators with different frequencies in the Tsallis statistics of the entropic parameter q (\(1<q<2\)) with escort average. The norm equations are derived, and the physical quantities are calculated with the physical temperature. It is found that the number of oscillators is restricted below \(1/(q-1)\). The energy, the Rényi entropy \(S_q^{(R)}\), and the Tsallis entropy \(S_q^{(T)}\) are obtained by solving the norm equations approximately at high physical temperature and/or for small deviation \(q-1\). The energy is q-independent at high physical temperature when the physical temperature is adopted, and the energy is proportional to the number of oscillators and physical temperature at high physical temperature. The form of the Rényi entropy is similar to that of the von-Neumann entropy, and the Tsallis entropy is given through the Rényi entropy. The physical temperature dependence of the Tsallis entropy is different from that of the Rényi entropy. The Tsallis entropy is bounded from the above, while the Rényi entropy increases with the physical temperature. The ratio of the Tsallis entropy to the Rényi entropy is small at high physical temperature. The relation between the physical temperature \(T_{\mathrm {ph}}\) and the temperature T (the inverse of the Lagrange multiplier) is obtained, and the quantity as a function of T and q can be obtained through \(T_{\mathrm {ph}}\). We calculate the free energy \(F_q^{(R)}\) which is defined with \(T_{\mathrm {ph}}\) and \(S_q^{(R)}\) and the free energy \(F_q^{(T)}\) which is defined with T and \(S_q^{(T)}\). The relation between \(\partial F_q^{(R)}/\partial T_{\mathrm {ph}}\) and \(S_q^{(R)}\) and the relation between \(\partial F_q^{(T)}/\partial T\) and \(S_q^{(T)}\) are shown.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This study is theoretical, and no data is generated.]

Notes

  1. The Bernoulli number \(B_n\) is often defined as \(B_n(x=0)\). It may worth to mention that \(B_n(x=0) = B_n(x=1)\) for \(n \ne 1\).

References

  1. G. Wilk, Z. Włodarczyk, Interpretation of the nonextensivity parameter \(q\) in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  2. T.S. Biró, A. Jakovác, Power–law tails from multiplicative noise. Phys. Rev. Lett. 94, 132302 (2005)

    Article  ADS  Google Scholar 

  3. G. Wilk, Z. Włodarczyk, On possible origins of power–law distributions. AIP Conf. Proc. 1558, 893 (2013)

    Article  ADS  Google Scholar 

  4. N.M. Mutothya, Y. Xi, Y. Li, R. Metzler, N.M. Mutua, First passage dynamics of stochastic motion in heterogeneous media driven by correlated white Gaussian and coloured non-Gaussian noises. J. Phys. Complex. 2, 045012 (2021)

    Article  ADS  Google Scholar 

  5. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer Science + Business Media LLC, New York, 2010)

  6. C. Tsallis, Nonadditive entropy and nonextensive statistical mechanics—An overview after 20 years. Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  7. M. Ishihara, Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics. Int. J. Mod. Phys. E 25, 1650066 (2016)

    Article  ADS  Google Scholar 

  8. T. Bhattacharyya, J. Cleymans, S. Mogliacci, Analytic results for the Tsallis thermodynamic variables. Phys. Rev. D 94, 094026 (2016)

    Article  ADS  Google Scholar 

  9. T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci, On the precise determination of the Tsallis parameters in proton - proton collisions at LHC energies. J. Phys. G: Nucl. Part. Phys. 45, 055001 (2018)

    Article  ADS  Google Scholar 

  10. H. Umpierrez, S. Davis, Fluctuation theorems in \(q\)-canonical ensembles. Phys. A 563, 125337 (2021)

    Article  MathSciNet  Google Scholar 

  11. S. Kalyana Rama, Tsallis statistics: averages and a physical interpretation of the Lagrange multiplier \(\beta \). Phys. Lett. A 276, 103 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Abe, S. Martinez, F. Pennini, A. Plastino, Nonextensive thermodynamic relations. Phys. Lett. A 281, 126 (2001)

    Article  ADS  Google Scholar 

  13. S. Abe, Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Rényi-entropy-based theory. Phys. A 300, 417 (2001)

    Article  MathSciNet  Google Scholar 

  14. H.H. Aragão-Rêgo, D.J. Soares, L.S. Lucena, L.R. da Silva, E.K. Lenzi, Kwok Sau Fa, Bose-Einstein and Fermi-Dirac distributions in nonextensive Tsallis statistics: an exact study. Phys. A 317, 199 (2003)

    Article  MathSciNet  Google Scholar 

  15. E. Ruthotto, “Physical temperature and the meaning of the \(q\) parameter in Tsallis statistics”, arXiv:cond-mat/0310413

  16. R. Toral, On the definition of physical temperature and pressure for nonextensive thermodynamics. Phys. A 317, 209 (2003)

    Article  MathSciNet  Google Scholar 

  17. H. Suyari, The unique non self-referential \(q\)-canonical distribution and the physical temperature derived from the maximum entropy principle in Tsallis statistics. Prog. Theor. Phys. Suppl. 162, 79 (2006)

  18. M. Ishihara, Phase transition for the system of finite volume in the \(\phi ^4\) theory in the Tsallis nonextensive statistics. Int. J. Mod. Phys. A 33, 1850067 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Ishihara, Momentum distribution and correlation for a free scalar field in the Tsallis nonextensive statistics based on density operator. Eur. Phys. J. A 54, 164 (2018)

  20. M. Ishihara, “Thermodynamic relations and fluctuations with physical quantities in the Tsallis statistics”, arXiv:2104.11427

  21. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Phys. A 261, 534 (1998)

    Article  Google Scholar 

  22. E. Van der Straeten, C. Beck, Superstatistical distributions from a maximum entropy principle. Phys. Rev. E 78, 051101 (2008)

    Article  ADS  Google Scholar 

  23. A.S. Parvan, T.S. Biro, Extensive Rényi statistics from non-extensive entropy. Phys. Lett. A 340, 375 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.S. Parvan, T.S. Biro, Rényi statistics in equilibrium statistical mechanics. Phys. Lett. A 374, 1951 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Yamano, On the robust thermodynamical structure against arbitrary entropy form an energy mean value. Eur. Phys. J. B 18, 103 (2000)

    Article  ADS  Google Scholar 

  26. O. Espinosa, V.H. Moll, On some integrals involving the Hurwitz zeta function: Part 1. Ramanujan J. 6, 159 (2002)

    Article  MathSciNet  Google Scholar 

  27. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Clarendon Press, Oxford, 2015)

    MATH  Google Scholar 

  28. M.A. Shpot, M.P. Chaudhary, R.B. Paris, Integrals of products of Hurwitz zeta functions and the Casimir effect in \(\phi ^4\) field theories. J. Class. Anal. 9, 99 (2016)

    Article  MathSciNet  Google Scholar 

  29. A. Boumali, “The one-dimensional thermal properties for the relativistic harmonic oscillators”, arXiv:1409.6205v1

  30. S.N.M. Ruijsenaars, On Barnes multiple zeta and gamma functions. Adv. Math. 156, 107 (2000)

    Article  MathSciNet  Google Scholar 

  31. K. Kirsten, “Basic zeta functions and some applications in physics”, from A Window into Zeta and Modular Physics, Editors K. Kirsten and F. Williams, MSRI Pub. 57 and Cambridge University Press, 101 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ishihara.

Appendices

Appendix A: Approximate expression of Hurwitz zeta function

The Hurwitz zeta function [26,27,28] is defined by

$$\begin{aligned}&\zeta _{\mathrm {H}}(s,\alpha ) := \sum _{n=0}^{\infty } \frac{1}{(\alpha + n)^s} . \end{aligned}$$
(A.1)

We treat the case of \(s>1\) and \(\alpha > 0\) in this appendix.

Let \(B_n(x)\) be Bernoulli polynomials which are defined by

$$\begin{aligned} \frac{te^{xt}}{e^t-1} = \sum _{n=0}^{\infty } B_n(x) \frac{t^n}{n!} . \end{aligned}$$
(A.2)

The Bernoulli number \(B_n\) in this paper is definedFootnote 1 by

$$\begin{aligned} B_n := B_n(x=1). \end{aligned}$$
(A.3)

We use the Euler–Maclaurin formula. Let a and b be integer with \(a < b\) and let f(x) be continuously differentiable for M-times. The Euler–Maclaurin formula is

$$\begin{aligned} \sum _{n=a}^b f(n) =&\int _a^b dx f(x) + \frac{1}{2} (f(b)+f(a))\nonumber \\&+ \sum _{k=1}^{M-1} \frac{B_{k+1}}{(k+1)!} (f^{(k)}(b) - f^{(k)} (a)) \nonumber \\&- \frac{(-1)^M}{M!} \int _a^b dx B_M(x-[x]) f^{(M)}(x) , \end{aligned}$$
(A.4)

where \(f^{(k)}\) is k-th derivative and [x] is the Gauss symbol (the floor function).

We attempt to find the expression of \(\zeta _{\mathrm {H}}(1+z, \alpha )\) for \(z>0\) using the Euler–Maclaurin formula. The right-hand side of Eq. (A.1) is an infinite series. Therefore, we first consider the following finite series:

$$\begin{aligned} \zeta _{H,m}(s,\alpha ) = \sum _{n=0}^m \frac{1}{(\alpha + n)^s} . \end{aligned}$$
(A.5)

We set f(x) as \(1/(\alpha + x)^{1+z}\) and apply the Euler–Maclaurin formula. By taking the limit \(m \rightarrow \infty \), we have the expression of \(\zeta _{\mathrm {H}}(1+z,\alpha )\). The integral part converges when \(\alpha \) is positive. We finally obtain

$$\begin{aligned}&\zeta _{\mathrm {H}}(1+z, \alpha ) \nonumber \\&\quad = \frac{1}{z\alpha ^z} + \frac{1}{2\alpha ^{1+z}}\nonumber \\&\qquad + \sum _{k=1}^{M-1} \frac{(-1)^{k+1} B_{k+1}}{(k+1)!} \frac{\varGamma (z+k+1)}{\varGamma (z+1)} \frac{1}{\alpha ^{z+k+1}} \nonumber \\&\qquad - \frac{(-1)^M}{M!} \int _0^{\infty } dx B_M(x-[x]) f^{(M)}(x) \quad (z>0, \alpha > 0) . \end{aligned}$$
(A.6)

The function \(\zeta _{\mathrm {H}}(1+z, \alpha )\) can be rewritten [29]. For example, \(\zeta _{\mathrm {H}}(1+z, \alpha )\) is given by

$$\begin{aligned}&\zeta _{\mathrm {H}}(1+z, \alpha ) \nonumber \\&\quad = \frac{1}{z\alpha ^z} + \frac{1}{2\alpha ^{1+z}} + \frac{1}{z} \sum _{k=2}^{M} \frac{B_k}{k!} \frac{\varGamma (z+k)}{\varGamma (z)} \frac{1}{\alpha ^{z+k}} \nonumber \\&\qquad - \frac{(-1)^M}{M!} \int _0^{\infty } dx B_M(x-[x]) f^{(M)}(x) \quad (z>0, \alpha > 0), \end{aligned}$$
(A.7)

because \(B_{2n+1}\) is zero for \(n \ge 1\) and \(\varGamma (z+1) = z \varGamma (z)\).

It is possible to estimate the integral of Eq. (A.6) by setting M. For example, the upper value of the integral with \(M=2\) is estimated:

$$\begin{aligned} \left| \frac{1}{2!} \int _0^{\infty } B_2(x-[x]) f^{(2)}(x) \right| \le \frac{C_2}{2!} \int _0^{\infty } \left| f^{(2)}(x) \right| , \end{aligned}$$
(A.8)

where \(C_2\) is the maximum value of \(|B_2(x)|\) in the range of \(0 \le x \le 1\).

From Eq. (A.6), we find that the \(\zeta _{\mathrm {H}}(1+z, \alpha )\) for \(\alpha \gg 1\) behaves

$$\begin{aligned} \zeta _{\mathrm {H}}(1+z,\alpha ) \sim \frac{1}{z \alpha ^{z}}. \end{aligned}$$
(A.9)

Appendix B: Approximate expression of Barnes zeta function

The Barnes zeta function [30, 31] is defined by

$$\begin{aligned}&\zeta _{\mathrm {B}}(s,\alpha |\mathbf {\omega }_N) \nonumber \\&\quad := \sum _{n_1,\cdots ,n_N=0}^{\infty } \frac{1}{(\alpha + \omega _1 n_1 + \cdots + \omega _N n_N)^s}, \nonumber \\&\qquad \qquad \mathbf {\omega }_N = (\omega _1, \omega _2, \cdots , \omega _N), \end{aligned}$$
(B.10)

where \(s>N\), \(\alpha > 0\), and \(\omega _j > 0\).

We define \(\varOmega _N\) as

$$\begin{aligned} \varOmega _N := \alpha + \omega _1 n_1 + \cdots + \omega _N n_N . \end{aligned}$$
(B.11)

The function \(\zeta _{\mathrm {B}}\) is represented as

$$\begin{aligned} \zeta _{\mathrm {B}}(s,\alpha |\mathbf {\omega }_N)&= \sum _{n_1,\cdots ,n_N=0}^{\infty } \frac{1}{(\varOmega _N)^s} \nonumber \\&= \frac{1}{(\omega _N)^s} \sum _{n_1,\cdots ,n_{N-1}=0}^{\infty } \sum _{n_N=0}^{\infty } \frac{1}{((\varOmega _{N-1}/\omega _N)+n_N)^s} \nonumber \\&= \frac{1}{(\omega _N)^s} \sum _{n_1,\cdots ,n_{N-1}=0}^{\infty } \zeta _{\mathrm {H}}(s, \varOmega _{N-1}/\omega _N) . \end{aligned}$$
(B.12)

We have \(\zeta _{\mathrm {H}}(1+z,\alpha ) \sim 1/(z \alpha ^z)\) for \(\alpha \gg 1\). Therefore, for sufficiently large \(\alpha \), we have

$$\begin{aligned} \zeta _{\mathrm {B}}(1+z,\alpha |\mathbf {\omega }_N)&\sim \frac{1}{(\omega _N)^{1+z}} \sum _{n_1,\cdots ,n_{N-1}=0}^{\infty } \frac{1}{z (\varOmega _{N-1}/\omega _N)^{z}}\nonumber \\&= \frac{1}{z \omega _N} \zeta _{\mathrm {B}}(z, \alpha |\mathbf {\omega }_{N-1}) . \end{aligned}$$
(B.13)

Using the recurrence relation, Eq. (B.13), we have the approximate expression of \(\zeta _{\mathrm {B}}\) for \(\alpha \gg 1\):

$$\begin{aligned}&\zeta _{\mathrm {B}}(1+z, \alpha |\mathbf {\omega }_N) \nonumber \\&\quad \sim \frac{1}{z (z-1) \cdots (z-(N-1))} \frac{1}{\omega _1 \omega _2 \cdots \omega _N} \frac{1}{\alpha ^{z-(N-1)}} \nonumber \\&\quad = \frac{1}{\Bigg (\displaystyle \prod \nolimits _{j=0}^{N-1} (z-j)\Bigg ) \Bigg (\displaystyle \prod \nolimits _{j=1}^{N} \omega _j \Bigg ) \alpha ^{z-(N-1)}} ~ (z {-} (N{-}1) {>} 0). \end{aligned}$$
(B.14)

The condition \(z - (N-1) > 0\) is rewritten as \(1+z - N >0\). This condition is equivalent to the condition \(s>N\) with \(s=1+z\) for \(\zeta _{\mathrm {B}}(s, \alpha |\mathbf {\omega }_N)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, M. Thermodynamics of the independent harmonic oscillators with different frequencies in the Tsallis statistics in the high physical temperature approximation. Eur. Phys. J. B 95, 53 (2022). https://doi.org/10.1140/epjb/s10051-022-00309-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00309-w

Navigation