Skip to main content
Log in

Structural, elastic, electronic and optical properties of the newly synthesized selenides Tl2CdXSe4 (X = Ge, Sn)

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Motivated by the growing demand for new performant semiconducting materials, we investigated in detail the structural, elastic, electronic and optical properties of two newly synthesized compounds, namely Tl2CdGeSe4 and Tl2CdSnSe4, using density functional theory calculations. The calculations were performed relativistically, including the spin–orbit coupling (SOC). The computed equilibrium structural parameters are in excellent agreement with available measurements. Note that the calculations of all the considered properties were performed with the theoretically obtained equilibrium lattice parameters. The predicted monocrystalline and polycrystalline elastic constants reveal that the studied compounds are soft, ductile, mechanically stable and substantially structurally and elastically anisotropic materials. Our calculations using the Tran-Blaha modified Becke-Johnson potential with the inclusion of SOC show that Tl2CdGeSe4 and Tl2CdSnSe4 are direct bandgap semiconductors. The inclusion of SOC is found to reduce the fundamental bandgap of Tl2CdGeSe4 from 1.123 to 0.981 eV and that of Tl2CdSnSe4 from 1.097 to 0.953 eV. The l-decomposed atom-projected densities of states were calculated to identify the contribution of each constituent atom to the electronic states in the energy bands. The upper valence subband predominantly comes from the Se-4p states, while the bottom of the conduction band mainly originates from the Se-4p and Ge-4p/Sn-5p states. The frequency-dependent linear optical parameters, viz., the complex dielectric function, absorption coefficient, refractive index, reflectivity and energy-loss function, were calculated for electromagnetic waves polarized parallel and perpendicular to the c-axis in a wide energy window. An attempt was made to identify the microscopic origin of the peaks and structures observed in the calculated optical spectra.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Gutzmann, C. Nather, W. Bensch, K4Vp2S9. Acta Cryst. C 60, i11–i13 (2004)

    Article  Google Scholar 

  2. S. Kumar, A. Akande, F. El-Mellouhi, H. Park, S. Sanvito, Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides. Phys. Rev. Mater. 4, 075401–075413 (2020)

    Article  Google Scholar 

  3. R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion. 130, 97–104 (2000)

    Article  Google Scholar 

  4. B.N. Schumer, R.T. Downs, K.J. Domanik, M.B. Andrade, M.J. Origlieri, Pirquitasite, Ag2ZnSnS4. Acta Cryst. E 69, i8–i9 (2013)

    Article  Google Scholar 

  5. Yu. Kogut, A. Fedorchuk, O. Zhbankov, Ya. Romanyuk, I. Kityk, L. Piskach, O. Parasyuk, Isothermal section of the Ag2S–PbS–GeS2 system at 300 K and the crystal structure of Ag2PbGeS4. J. Alloys Compd. 509, 4264–4267 (2011)

    Article  Google Scholar 

  6. Y. Huang, K. Wu, J. Cheng, Y. Chu, Z. Yang, S. Pan, Li2ZnGeS4: a promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response. Dalton Trans. 48, 4484–4488 (2019)

    Article  Google Scholar 

  7. D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 287, 1024–1027 (2000)

    Article  ADS  Google Scholar 

  8. M.G. Brik, O.V. Parasyuk, G.L. Myronchuk, I.V. Kityk, Specific features of band structure and optical anisotropy of Cu2CdGeSe4 quaternary compounds. Mater. Chem. Phys. 147, 155–161 (2014)

    Article  Google Scholar 

  9. A.P. Litvinchuk, V.M. Dzhagan, V.O. Yukhymchuk, M. YaValakh, I.S. Babichuk, O.V. Parasyuk, L.V. Piskach, O.D. Gordan, D.R.T. Zahn, Electronic structure, optical properties and lattice dynamics of orthorhombic Cu2CdGeS4 and Cu2CdSiS4 semiconductors. Phys. Rev. B 90(16), 165201–165208 (2014)

    Article  ADS  Google Scholar 

  10. C. Rincon, M. Quintero, E. Moreno, E. Ch Power, J.A. Quintero, M.A. Henao, Macías, Raman spectrum of Cu2CdSnSe4 stannite structure semiconductor compound. Superlattices Microstruct. 88, 99–103 (2015)

    Article  ADS  Google Scholar 

  11. J.-H. Zhang, D.J. Clark, A. Weiland, S.S. Stoyko, Y.S. Kim, J.I. Jang, J. Aitken, Li2CdGeSe4 and Li2CdSnSe4: biaxial nonlinear optical materials with strong infrared second-order responses and laser-induced damage thresholds influenced by photoluminescence. Inorg. Chem. Front. 4, 1472–1484 (2017)

    Article  Google Scholar 

  12. L. Salik, A. Bouhemadou, K. Boudiaf, F. Saad Saoud, S. Bin-Omran, R. Khenata, Y. Al-Douri, A.H. Reshak, Structural, elastic, electronic, magnetic, optical, and thermoelectric properties of the diamond-like quaternary semiconductor CuMn2InSe4. J. Supercond. Nov. Magn. 33, 1091–1102 (2020)

    Article  Google Scholar 

  13. S. Alnujaim, A. Bouhemadou, A. Bedjaoui, S. Bin-Omran, Y. Al-Douri, R. Khenata, S. Maabed, Ab initio prediction of the elastic, electronic and optical properties of a new family of diamond-like semiconductors, Li2HgMS4 (M = Si, Ge and Sn). J. Alloys Compd. 843, 155991–156014 (2020)

    Article  Google Scholar 

  14. A. Bedjaoui, A. Bouhemadou, S. Aloumi, R. Khenata, S. Bin-Omran, Y. Al-Douri, F. Saad Saoud, S. Bensalem, Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4. Solid State Sci. 70, 21–35 (2017)

    Article  ADS  Google Scholar 

  15. N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon Press, Elmsford, 1984)

    Google Scholar 

  16. M.A. McGuire, T.K. Reynolds, F.J. DiSalvo, Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides. Chem. Mater. 17, 2875–2884 (2005)

    Article  Google Scholar 

  17. M.A. McGuire, T.J. Scheidemantel, J.V. Badding, F.J. DiSalvo, Tl2AXTe4 (A = Cd, Hg, Mn; X = Ge, Sn): crystal structure, electronic structure, and thermoelectric properties. Chem. Mater. 17, 6186–6191 (2005)

    Article  Google Scholar 

  18. A.A. Lavrentyev, B.V. Gabrelian, T.V. Vu, L.N. Ananchenko, G.L. Myronchuk, O.V. Parasyuk, V.A. Tkach, K.I. Kopylova, O.Y. Khyzhun, Electronic and optical properties of quaternary sulfide Tl2HgSnS4, a promising optoelectronic semiconductor: a combined experimental and theoretical study. Opt. Mater. 92, 294–302 (2019)

    Article  ADS  Google Scholar 

  19. A.O. Selezen, L.V. Piskach, O.V. Parasyuk, I.D. Olekseyuk, The Tl2SnSe3-CdSe system and the crystal structure of the Tl2CdSnSe4 compound. J. Phase Equilib. Diffus. 40(6), 797–801 (2019)

    Article  Google Scholar 

  20. MYu. Mozolyuk, L.V. Piskach, A.O. Fedorchuk, I.D. Olekseyuk, O.V. Parasyuk, Physico-chemical interaction in the Tl2Se–HgSe–DIVSe2 systems (DIV – Si, Sn). Mater. Res. Bull. 47, 3830–3834 (2012)

    Article  Google Scholar 

  21. M. Yu Mozolyuk, L.V. Piskach, A.O. Fedorchuk, I.D. Olekseyuk, O.V. Parasyuk, The Tl2Se–HgSe–GeSe2 system and the crystal structure of Tl2HgGeSe4. Chem. Met. Alloys. 6, 55–62 (2013)

    Article  Google Scholar 

  22. L.V. Piskach, M. Yu Mozolyuk, A.O. Fedorchuk, I.D. Olekseyuk, O.V. Parasyuk, Phase equilibria in the Tl2S–HgS–SnS2 system at 520 K and crystal structure of Tl2HgSnS4. Chem. Met. Alloys 10, 136–141 (2017)

    Article  Google Scholar 

  23. V. Vu, A.A. Lavrentyev, B.V. Gabrelian, H.D. Tong, O.V. Parasyuk, O.Y. Khyzhun, Calculations within DFT framework of the electronic and optical properties of quaternary sulfide Tl2PbSiS4, a prospective optoelectronic semiconductor. Comput. Condens. Matter 21, e00392-11 (2019)

    Article  Google Scholar 

  24. A.O. Selezen, I.D. Olekseyuk, G.L. Myronchuk, O.V. Smitiukh, L.V. Piskach, Synthesis and structure of the new semiconductor compounds Tl2BIIDIVX4 (BII–Cd, Hg; DIV–Si, Ge; X–Se, Te) and isothermal sections of the Tl2Se–CdSe–Ge(Sn)Se2 systems at 570 K. J. Solid State Chem. 289, 121422–121427 (2020)

    Article  Google Scholar 

  25. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, A.O. Selezen, L.V. Piskach, G.L. Myronchuk, M. Denysyuk, V.A. Tkach, K.D. Pham, O.Y. Khyzhun, Crystal growth, electronic and optical properties of Tl2CdSnSe4, a recently discovered prospective semiconductor for application in thin film solar cells and optoelectronics. Opt. Mater. 111, 110656–110712 (2021)

    Article  Google Scholar 

  26. O.V. Parasyuk, V.S. Babizhetskyy, O.Y. Khyzhun, V.O. Levytskyy, I.V. Kityk, G.L. Myronchuk, O.V. Tsisar, L.V. Piskach, J. Jedryka, A. Maciag, M. Piasecki, Novel quaternary TlGaSn2Se6 single crystal as promising material for laser operated infrared nonlinear optical modulators. Curr. Comput.-Aided Drug Des. 7, 341–416 (2017)

    Google Scholar 

  27. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, A.O. Selezen, L.V. Piskach, I.D. Olekseyuk, G.L. Myronchuk, M. Denysyuk, V.A. Tkach, N.N. Hieu, K.D. Pham, O.Y. Khyzhun, Quaternary Tl2CdGeSe4 selenide: electronic structure and optical properties of a novel semiconductor for potential application in optoelectronics. J. Solid State Chem. 302, 122453–122513 (2021)

    Article  Google Scholar 

  28. O.Y. Khyzhun, V.L. Bekenev, V.V. Atuchin, L.D. Pokrovsky, V.N. Shlegel, N.V. Ivannikova, The electronic structure of Pb2MoO5: first-principles DFT calculations and X-ray spectroscopy measurements. Mater. Des. 105, 315–322 (2016)

    Article  Google Scholar 

  29. P.K. Bayannavar, A.C. Mendhe, B.R. Sankapal, M.S. Sannaikar, S.K.J. Shaikh, S.R. Inamdar, R.R. Kamble, Synthesis of metal free organic dyes: experimental and theoretical approach to sensitize one-dimensional cadmium sulphide nanowires for solar cell application. J. Mol. Liq. 336, 116862–116869 (2021)

    Article  Google Scholar 

  30. B. Pandit, S.R. Rondiya, S. Shegokar, L.K. Bommineedi, R.W. Cross, N.Y. Dzade, B.R. Sankapal, Reciprocated electrochemical and DFT investigations of iron selenide: mechanically bendable solid-state symmetric supercapacitor. Sustain. Energy Fuels 5, 5001–5012 (2021)

    Article  Google Scholar 

  31. S. Majumder, P.K. Baviskar, B.R. Sankapal, Straightening of chemically deposited CdS nanowires through annealing towards improved PV device performance. Ceram. Int. 42, 6682–6691 (2016)

    Article  Google Scholar 

  32. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)

    Article  Google Scholar 

  33. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406–136414 (2008)

    Article  ADS  Google Scholar 

  34. J.S. Lin, A. Qteish, M.C. Payne, V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials Phys. Rev. B 47, 4174–4180 (1993)

    Article  Google Scholar 

  35. S.B. Zhang, L.W. Shi, Comput. Mater. Sci. 142, 99 (2018)

    Article  Google Scholar 

  36. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  37. B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233–240 (1997)

    Article  ADS  MATH  Google Scholar 

  38. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    Article  ADS  Google Scholar 

  39. P. Blaha, K. Schwarz, F. Tran, R.T. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101–074130 (2020)

    Article  ADS  Google Scholar 

  40. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226404 (2009)

    Article  ADS  Google Scholar 

  41. D. Koller, F. Tran, P. Blaha, Improving the modified Becke–Johnson exchange potential. Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  42. K.S. Virdi, Y. Kauffmann, C. Ziegler, P. Ganter, B.V.L. Wayne, D. Kaplan, P. Blaha, C. Scheu, Electronic structure of KCa2Nb3O10 as envisaged by density functional theory and valence electron energy loss spectroscopy. Phys. Rev. B 87, 115108–115109 (2013)

    Article  ADS  Google Scholar 

  43. C.-Y. Yoo, K.-P. Hong, S.-J. Kim, A new-layered perovskite, KSrNb2O6F, by powder neutron diffraction. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 63, i63–i65 (2007)

    Article  Google Scholar 

  44. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83, 195134–195210 (2011)

    Article  ADS  Google Scholar 

  45. D.J. Singh, S.S.A. Seo, H.N. Lee, Optical properties of ferroelectric Bi4Ti3O12. Phys. Rev. B 82, 180103(R) – 180104 (2010)

    Article  ADS  Google Scholar 

  46. J.A. Camargo-Martinez, R. Baquero, Performance of the modified Becke–Johnson potential for semiconductors. Phys. Rev. B 86, 195106–195108 (2012)

    Article  ADS  Google Scholar 

  47. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  ADS  Google Scholar 

  48. F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224114 (2014)

    Article  ADS  Google Scholar 

  49. R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  50. A. Bedjaoui, A. Bouhemadou, S. Bin-Omran, Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation. High Press. Res. 36, 198–219 (2016)

    Article  ADS  Google Scholar 

  51. Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115–054215 (2007)

    Article  ADS  Google Scholar 

  52. Y. Tian, B. Xu, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Hard Met. Hard Mater. 33, 93–106 (2012)

    Article  Google Scholar 

  53. Q.-J. Liu, Z.-T. Liu, L.-P. Feng, Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO2 from first-principles. Phys. B 406, 345–350 (2011)

    Article  ADS  Google Scholar 

  54. S. Chen, Y. Sun, Y.-H. Duan, B. Huang, M.-J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. J. Alloys Compd 630, 202–208 (2015)

    Article  Google Scholar 

  55. S. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 7, 823–843 (1954)

    Article  Google Scholar 

  56. S.K. Saha, G. Dutta, Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe. Phys. Rev. B 94, 125209–125218 (2016)

    Article  ADS  Google Scholar 

  57. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    Article  ADS  Google Scholar 

  58. E. Langenberg, E. Ferreiro-Vila, V. Leborán, A.O. Fumega, V. Pardo, F. Rivadulla, Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides. Appl. Phys. Lett. Mater. 4, 104815–104819 (2016)

    Google Scholar 

  59. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84, 4891–4904 (1998)

    Article  ADS  Google Scholar 

  60. H. Ledbetter, A. Migliori, A general elastic-anisotropy measure. J. Appl. Phys. 100, 063516–063525 (2006)

    Article  ADS  Google Scholar 

  61. D.-D. Pang, X.-Q. Huang, H.-Y. Xue, C. Zhang, Z.-L. Lv, M.-Y. Duan, Properties of a predicted tetragonal carbon allotrope: first principles study. Diam. Relat. Mater. 82, 50–55 (2018)

    Article  ADS  Google Scholar 

  62. S.I. Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index. Phys. Rev. Lett. 101, 055504–055514 (2008)

    Article  ADS  Google Scholar 

  63. D.H. Chung, W.R. Buessem, in: Anisotropy in Single Crystal Refractory Compounds, vol. 2, ed. by F.W. Vahldiek, S.A. Mersol (Plenum Press, New York, 1968), pp. 217–245

  64. J.F. Nye, Properties of Crystals (Oxford University Press, Oxford, 1985)

    Google Scholar 

  65. O. Boudrifa, A. Bouhemadou, Ş Uğur, R. Khenata, S. Bin-Omran, Y. Al-Douri, Structural, electronic, optical and elastic properties of the complex K2PtCl6-structure hydrides ARuH6 (A = Mg, Ca, Sr and Ba): first-principles study. Philos. Mag. 96, 2328–2361 (2016)

    Article  ADS  Google Scholar 

  66. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1960)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The author S. Bin-Omran acknowledges the Researchers Supporting Project number RSP-2021/82, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SK: conceptualization, methodology, writing—original draft, AB: investigation, writing—review and editing, DA: methodology, KH: data curation, SB-O: resources, RK: software, YA-D: supervision, AFH: visualization, AH: validation, AFAE-R: validation.

Corresponding author

Correspondence to A. Bouhemadou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkour, S., Bouhemadou, A., Allali, D. et al. Structural, elastic, electronic and optical properties of the newly synthesized selenides Tl2CdXSe4 (X = Ge, Sn). Eur. Phys. J. B 95, 38 (2022). https://doi.org/10.1140/epjb/s10051-022-00288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00288-y

Navigation