Skip to main content
Log in

Computational study of structural, electronic, half-metallic and thermodynamic properties of Sr3X2O7 (X = Fe, Mn) compounds

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, electronic, half-metallic and magnetic properties of Sr3Mn2O7, Sr3Mn2O7 and Sr3FeMnO7 have been investigated using the full-potential linearized augmented plane wave method. Besides, the thermodynamic properties of the materials of interest have been studied using the quasi-harmonic Debye model accommodating the lattice vibrations effects. Our results showed that Sr3Mn2O7 is an indirect half-metallic material with a band gap of 0.73 eV, while Sr3Fe2O7 and Sr3FeMnO7 exhibit a metallic behavior. The materials of interest are found to exhibit 100% spin polarization at the Fermi energy which make them potential candidates for electron-spin-based futuristic devices. The effect of pressure and temperature on the studied properties is found to be highly effective in tuning some of the macroscopic properties of the compounds in question. Our findings compare well with those existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L Mao, C C Stoumpos and M G Kanatzidis J. Am. Chem. Soc. 141 1171 (2019)

    Article  Google Scholar 

  2. J F Mitchell, J E Millburn, M Medarde, S Short, J D Jorgensen and M T Fernandez-Diaz J. Sol. Stat. Chem. 141 599 (1998)

    Article  ADS  Google Scholar 

  3. S E Dann, M T Weller, D B Currie, M F Thomas and A D Al-Rawwas J. Sol. Stat. Chem. 97 179 (1992)

    Article  ADS  Google Scholar 

  4. P Maity, J Yin, B Cheng, J H He and O M Bakr J. Phys Chem. Lett. 10 5259 (2019)

    Article  Google Scholar 

  5.  A Chen, X Zhang, Z Zhang, S Yao and Z Zhou J. Mater. Chem. A 7 11530(2019)

    Article  Google Scholar 

  6.  X Gao et al. Advanced Science 6 00941(2019)

    Google Scholar 

  7. J Chen, Y Shi, Y He and T Zhi FlatChem 17 100116 (2019)

    Article  Google Scholar 

  8. N Ashari-Astani et al. J. Phys Chem. Lett 10 3543 (2019)

    Article  Google Scholar 

  9. Y Zheng, T Niu, X Ran, J Qiu and B Li J. Mater. Chem. A 7 13860 (2019)

    Article  Google Scholar 

  10. H Ren et al. Nature Photonics 14 154 (2020)

    Article  ADS  Google Scholar 

  11. S Kumar, Fjelvag, A O Sjasted and h F Shilova J. Magn. Magn. Mater. 496 165915 (2020)

    Article  Google Scholar 

  12. R A de Groot, F M Mueller, P G Van Engen and K H J Buschow Phys. Rev. Lett. 50 2024 (1984)

    Article  Google Scholar 

  13. S Heinze et al. Nature Physics 7 713 (2011)

    Article  ADS  Google Scholar 

  14. S Berri J. Supercond. Nov. Magn. 401 667 (2016)

  15. S Berri J. Supercond. Nov. Magn. 401 2381 (2016)

  16. N Bouzouira et al. Mater. Sci. Semicond. Process. 38 126 (2015)

    Article  Google Scholar 

  17. M. Rostami, M. Afshari and M. Moradi J. Alloy. Compd. 575 301 (2013)

  18. S Aouini, S Ziti, H Labrim and L Bahamd Sol. Stat. Comm 241 14 (2016)

    Article  ADS  Google Scholar 

  19. S Idrissi et al. Chinese Journal of Physics 60 549 (2019)

    Article  ADS  Google Scholar 

  20. S Saib, N Bouarissa, P Rodríguez-Hernández and A M Physica B 403 4059 (2008)

    Google Scholar 

  21. N Bouarissa Mater. Sci. Eng. B 86 53 (2001)

  22. S Daoud, N Bioud and N Bouarissa Mater. Sci. Semicond. Process. 31 124 (2015)

    Article  ADS  Google Scholar 

  23. N Bouarissa J. Phys. Chem. Solids 67 1440 (2006)

  24. C C Rinzler and A Allanore Philos. Mag. 97 561 (2017)

    Article  ADS  Google Scholar 

  25. N Bouarissa Phys. Status Solidi B 231 391 (2002)

  26. A Mujica, A Rubio, A Muñoz and R J Needs Rev. Mod. Phys. 75 863 (2003) and references therein

    Article  ADS  Google Scholar 

  27. K Kassali and N Bouarissa Mater. Chem. Phys. 76 255 (2002)

    Article  Google Scholar 

  28. K Daviau and K K M Lee Crystals 8 217 (2018)

    Article  Google Scholar 

  29. N Bouarissa Mater. Chem. Phys. 73 51 (2002)

  30. S Berri J. Magn. Magn. Mater. 385 124 (2015)

  31. S Berri, S Chami, M Attallah, M Oumertem and D Maouche Modern Electronic Materials 4 13 (2018)

    Article  Google Scholar 

  32. S Berri J. Supercond. Nov. Magn. 29 2381 (2016)

  33. S Berri Journal of Science: Advanced Materials and Devices 3 254 (2018)

  34. S Berri Chinese journal of physics 55 195 (2017)

  35. S Berri J. Supercond. Nov. Magn. 29 1309 (2016)

  36. S Berri J. Supercond. Nov. Magn. 32 2219 (2019)

  37. M E A Monir et al. J. Magn. Magn. Mater. 378 41 (2015)

    Article  ADS  Google Scholar 

  38. M E A Monir et al. Indian Journal of Physics 89 1251(2015)

    Article  ADS  Google Scholar 

  39. B Abderrahim et al. J. Supercond. Nov. Magn. 29 277 (2016)

    Article  Google Scholar 

  40. M E A Monir et al. J. Supercond. Nov. Magn. 30 2197 (2017)

    Article  Google Scholar 

  41. O Amrich et al. J. Supercond. Nov. Magn. 31 241 (2018)

    Article  Google Scholar 

  42. F Khelfaoui, M Ameri, D Bensaid, I Ameri and Y Al-Douri J. Supercond. Nov. Magn. 31 3183 (2018)

    Article  Google Scholar 

  43. S Idrissi et al. J. Alloy. Compd. 820 153373 (2020)

    Article  Google Scholar 

  44. S Idrissi, H Labrim, S Ziti and L Bahmad Applied Physics A DOI: https://doi.org/10.1007/s00339-020-3354-6.

  45. P Blaha, K Schwarz, P Sorantin and S B Trickey Comput. Phys. Commun. 59 399 (1990)

    Article  ADS  Google Scholar 

  46. P Hohenberg and W Kohn Phys. Rev. B 36 864 (1964)

    Article  Google Scholar 

  47. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz, Techn. Universitat Wien) ISBN3–9501031–1–2 (2001)

  48. J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  49. Z Souadia, A Bouhemadou, O Boudrifa, S Bin-Omran, R Khenata and Y Al-Douri High Pressure Research 37 558 (2017)

    Article  ADS  Google Scholar 

  50. K Bidai et al. Chinese Journal of Physics 55 2144 (2017)

    Article  ADS  Google Scholar 

  51. M H Benkabou et al. Chinese Journal of Physics 56 131 (2018)

    Article  ADS  Google Scholar 

  52. A Bouhemadou et al. J. Alloy. Compd. 774 299 (2019)

    Article  Google Scholar 

  53. M A Blanco, E Francisco and V Luaňa Comput. Phys. Commun. 158 7 (2004)

    Article  ADS  Google Scholar 

  54. F D Murnaghan Proc. Natl. Acad. Sci. USA 30, 244 (1944)

  55. S Simsek, H Koc, A M Mamedov and E Ozbay Ferroelectrics 538 135 (2019)

  56. H Kakemoto, M Ishikawa, J Yazaki and H Irie Materials Transactions 54 1986 (2013)

    Article  Google Scholar 

  57. P Adler et al. Phys. Rev. B 60 4609 (1999)

    Article  ADS  Google Scholar 

  58. W Tan et al. RSC Adv. 8 26448 (2018)

    Article  ADS  Google Scholar 

  59. H Meskine, Z S Popovic´ and S Satpathy Phys. Rev. B 65 094402 (2002)

    Article  Google Scholar 

  60. Tsujimoto et al. Chem. Mater. 23 3652 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Berri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 3.

Table 3 Atomic coordinates for Sr3Mn2O7 and Sr3Fe2O7 compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berri, S., Bouarissa, N. & Medkour, Y. Computational study of structural, electronic, half-metallic and thermodynamic properties of Sr3X2O7 (X = Fe, Mn) compounds. Indian J Phys 95, 2293–2301 (2021). https://doi.org/10.1007/s12648-020-01890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01890-5

Keywords

Navigation