Skip to main content
Log in

Influence of orientation on crack propagation of aluminum by molecular dynamics

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The crack growth behavior of single crystal aluminum is investigated under tensile test at room temperature by molecular dynamics simulations. Three crack models are selected, which are [001](010) crack, (\(\overline{1}\)10)[110] crack and [11\(\overline{2}\)](111) crack. The results present that the mechanical properties and deformation mechanisms are significantly influenced by the orientation of initial crack. The [\(\overline{1}\)10] (110) crack has the maximum yield strength, the [11\(\overline{2}\)] (111) crack has the maximum elastic modulus. The [001](010) crack propagates in the form of micro-cracks and shows ductility fracture, and the main deformation mechanisms are blunting and slip bands at crack tip. The (\(\overline{1}\)10)[110] crack evolves into a void with the loading increasing, presents ductile extension, and the slip bands divide the crystal structure into mesh region. For (111) [11\(\overline{2}\)] crack, it has very good toughness and ductility and can effectively reduce structural damage caused by crack propagation.

Graphical abstract

The initial models of crack. (a) [001](010) crack, (b) [110] (110) crack (c) [11 2] (111) crack

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: Due to the large amount of data of all simulation results, it was not put into the data system. But I have stored it myself. If readers need it, they can contact me directly at Email: mlml6277@126.com.].

References

  1. P. Gumbsch, J. Riedle, A. Hartmaier, H.F. Fischmeister, Science 282, 1293–1295 (1998)

    Article  ADS  Google Scholar 

  2. A. Hartmaier, P. Gumbsch, Phys. Rev. B 71, 024108 (2005)

    Article  ADS  Google Scholar 

  3. B. Decelis, A.S. Argon, S. Yip, J. Appl. Phys. 54, 4864–4878 (1983)

    Article  ADS  Google Scholar 

  4. G.P. Potirniche, M.F. Horstemeyer, Philos. Mag. Lett. 86(3), 185–193 (2006)

    Article  ADS  Google Scholar 

  5. T. Tang, S.H. Kim, M.F. Horstemeyer, Comput. Mater. Sci. 48, 42439 (2010)

    Google Scholar 

  6. Y.F. Guo, D.L. Zhao, Mater. Sci. Eng. A 448, 281–186 (2007)

    Article  Google Scholar 

  7. W.D. Wang, C.L. Yi, K.Q. Fan, Trans. Nonferrous Met. Soc. China. 23(11), 3353–3361 (2013)

    Article  Google Scholar 

  8. D. Terentyev, E.E. Zhurkin, G. Bonny, Comput. Mater. Sci. 55, 313–321 (2012)

    Article  Google Scholar 

  9. S. Chandra, N. Naveen Kumar, M.K. Samal, Comput. Mater. Sci. 130, 268–281 (2017)

    Article  Google Scholar 

  10. H.X. Xie, C.Y. Wang, T. Yu, Chin. Phys. B 18, 0251 (2009)

    Article  ADS  Google Scholar 

  11. A. Uhnakova, A. Machova, P. Hora, Int. J. Fatigue 33, 1182–1188 (2011)

    Article  Google Scholar 

  12. L. Ma, S.F. Xiao, H.Q. Deng, W.Y. Hu, Int. J. Fatigue 68, 253 (2014)

    Article  Google Scholar 

  13. L. Ma, S.F. Xiao, H.Q. Deng, W.Y. Hu, Appl. Phys. A 118, 1399–1406 (2015)

    Article  ADS  Google Scholar 

  14. W. Fang, H.X. Xie, F.X. Yin, Mater. Sci. Eng. A 666, 314–319 (2016)

    Article  Google Scholar 

  15. M. Yaghoobi, G.Z. Voyiadjis, Acta Mater. 121, 190–201 (2016)

    Article  ADS  Google Scholar 

  16. P. White, Int. J. Fatigue 44, 141–150 (2012)

    Article  Google Scholar 

  17. J. Ding, L.S. Wang, K. Song et al., J. Nanomater. 2017, 1–12 (2017)

    Google Scholar 

  18. A.J. Cao, Y.G. Wei, Phys. Rev. B 76, 1–5 (2007)

    Google Scholar 

  19. G.P. Potirniche, M.F. Horstemeyer, B. Jelinek et al., Int. J. Fatigue 2, 1179–1185 (2005)

    Article  Google Scholar 

  20. D. Farkas, M. Willemann, B. Hyde, Phys. Rev. Lett. 94, 165502 (2005)

    Article  ADS  Google Scholar 

  21. G.P. Potirniche, M.F. Horstemeyer, Mag. Lett 86, 185–193 (2006)

    Article  ADS  Google Scholar 

  22. K. Nishimura, N. Miyazaki, Comput. Mater. Sci 31, 269–278 (2004)

    Article  Google Scholar 

  23. J. Dana Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950–4963 (1987)

    Article  Google Scholar 

  24. S. Plimpton, J. Comp. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Surface Project of National Natural Science Foundation of China (No. 12072110), the key projects of Hunan education department (No. 20A344) and the project of Hunan University of Arts and Science (No. 20ZD05 and No. 19BSQD38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Deng, Y., Ren, Y. et al. Influence of orientation on crack propagation of aluminum by molecular dynamics. Eur. Phys. J. B 95, 25 (2022). https://doi.org/10.1140/epjb/s10051-022-00285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00285-1

Navigation