Skip to main content
Log in

3D scattering by 2D periodic zero-range potentials: total reflection/transmission and threshold effects

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Phenomena of total reflection and total transmission are studied in the case of quantum particle 3D scattering on 2D periodic zero-range potentials. The general case is considered where the target is a “molecular monolayer” obtained by 2D periodic mapping of N different zero-range potential scattering centers. This is an infinite multicenter and multichannel scattering problem. It turns out that many of the global properties of reflection and transmission coefficients are determined by phenomena which occur at thresholds for opening of new scattering channels. We have performed detailed numerical studies for the cases when \(N=1\) (atomic monolayers) and \(N=2\) (planar and non-planar diatomic monolayers, that is atomic bilayers) on square and honeycomb lattices. In these cases, many interesting predictions can be derived analytically. We have also addressed the problem of the quasi-2D localized states embedded in continuum, that is, the band structures above the vacuum level.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and there are no experimental data.]

References

  1. B. Shevitski, M. Mecklenburg, W.A. Hubbard, E.R. White, B. Dawson, M.S. Lodge, M. Ishigami, B.C. Regan, Phys. Rev. B 87, 045417 (2013)

    Article  ADS  Google Scholar 

  2. R.M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G.L. Kellogg, J.T. Robinson, I.V. Vlassiouk, Phys. Rev. B 87, 041406(R) (2013)

    Article  ADS  Google Scholar 

  3. J. Jobst, J. Kautz, D. Geelen, R.M. Tromp, S.J. van der Molen, Nat. Commun. 6, 8926 (2015)

    Article  ADS  Google Scholar 

  4. F. Wicki, J.N. Longchamp, T. Latychevskaia, C. Escher, H.W. Fink, Phys. Rev. B 94, 075424 (2016)

    Article  ADS  Google Scholar 

  5. P.S. Neu, D. Geelen, A. Thete, R.M. Tromp, S.J. van der Molen, Ultramicroscopy 222, 113199 (2021)

    Article  Google Scholar 

  6. V.U. Nazarov, E.E. Krasovskii, V.M. Silkin, Phys. Rev. B 87, 041405(R) (2013)

    Article  ADS  Google Scholar 

  7. J.A. Yan, J.A. Driscoll, B.K. Wyatt, K. Varga, S.T. Pantelides, Phys. Rev. B 84, 224117 (2011)

    Article  ADS  Google Scholar 

  8. H. Miyauchi, Y. Ueda, Y. Suzuki, K. Watanabe, Phys. Rev. B 95, 125425 (2017)

    Article  ADS  Google Scholar 

  9. N. Markovska, J. Pop-Jordanov, E.A. Solov’ev, Phys. Lett. A 234, 251 (1997)

    Article  ADS  Google Scholar 

  10. Y.N. Demkov, V.N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics (Plenum Press, New York, 1988)

    Book  Google Scholar 

  11. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics (AMS Chelsea Publishing, Providence, 2005)

    MATH  Google Scholar 

  12. K. Kambe, Z. Naturforschg. 23a, 422 (1967)

    Article  ADS  Google Scholar 

  13. E.G. McRae, J. Chem. Phys. 45, 3258 (1966)

    Article  ADS  Google Scholar 

  14. D. Maystre, in Plasmonics. ed. by S. Enoch, N. Bond (Springer, Berlin, 2012), pp. 39–83

  15. Y.E. Karpeshina, Theor. Math. Phys. 57, 1231 (1983)

    Article  Google Scholar 

  16. A. Grossmann, R. Hoegh-Krohn, M. Mebkhout, Commun. Math. Phys. 77, 87 (1980)

    Article  ADS  Google Scholar 

  17. T.P. Grozdanov, M.J. Raković, Phys. Rev. A 47, 3105 (1993)

    Article  ADS  Google Scholar 

  18. I. Stevanović, P. Crespo-Valero, K. Blagović, F. Bongard, J.R. Mosig, IEEE Trans. Microw. Theory Tech. 54, 3688 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Serbia-JINR collaboration program.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the paper.

Corresponding author

Correspondence to Tasko P. Grozdanov.

Appendices

Appendix A: Lattice sums

For numerical calculations of lattice sums we used formulas (32) and (33) from [13] obtained by Ewald’s method (taking into account that our definition of lattice sums has an extra factor \(\exp (i\mathbf{q}\cdot {\mathbf {\rho }})\)):

$$\begin{aligned}&S_{k,\mathbf{q}}(\mathbf {\rho }, z)=\sum _{\mathbf{n}} \frac{\exp [-i\mathbf{q}\cdot \mathbf{a_n}]}{2(|\mathbf {\rho }+\mathbf{a_n}|^2+|z|^2)^{1/2}} \nonumber \\&\quad \times \left\{ \exp [ ik(|\mathbf {\rho }+\mathbf{a_n}|^2+|z|^2)^{1/2}] \right. \nonumber \\&\quad \times \mathrm{erfc}\left[ \frac{ik}{2\eta } +(|\mathbf {\rho }+\mathbf{a_n}|^2+|z|^2)^{1/2}\eta \right] \nonumber \\&\quad +\exp [-ik(|\mathbf {\rho }+\mathbf{a_n}|^2+|z|^2)^{1/2}] \nonumber \\&\quad \times \left. \mathrm{erfc}\left[ -\frac{ik}{2\eta } +(|\mathbf {\rho }+\mathbf{a_n}|^2+|z|^2)^{1/2}\eta \right] \right\} \nonumber \\&\quad +\frac{\pi i}{A}\sum _{\mathbf{m}} \frac{\exp (i\mathbf{q_m}\cdot \mathbf {\rho })}{k_{z\mathbf{m}}} \nonumber \\&\quad \times \left[ \exp (ik_{z\mathbf{m}}|z|)\mathrm{erfc}\left( -\frac{ik_{z\mathbf{m}}}{2\eta }-|z|\eta \right) \right. \nonumber \\&\quad \left. +\exp (-ik_{z\mathbf{m}}|z|)\mathrm{erfc}\left( -\frac{ik_{z\mathbf{m}}}{2\eta }+|z|\eta \right) \right] , \end{aligned}$$
(A.1)
$$\begin{aligned}&S'_{k,\mathbf{q}}(\mathbf{0}, 0)=\sum _{\mathbf{n} \ne \mathbf{0}}\frac{\exp (-i\mathbf{q}\cdot \mathbf{a_n})}{2|\mathbf{a_n}|} \nonumber \\&\quad \times \left[ \exp ( ik|\mathbf{a_n}|)\mathrm{erfc}\left( \frac{ik}{2\eta } +|\mathbf{a_n}|\eta \right) +\exp (- ik|\mathbf{a_n}|)\right. \nonumber \\&\quad \times \left. \mathrm{erfc}\left( -\frac{ik}{2\eta } +|\mathbf{a_n}|\eta \right) \right] +\frac{2\pi i}{A}\sum _{\mathbf{m}} \frac{\mathrm{erfc}\left( -\frac{ik_{z\mathbf{m}}}{2\eta }\right) }{k_{z\mathbf{m}}}\nonumber \\&\quad -ik \mathrm{erf}\left( \frac{ik}{2\eta }\right) -\frac{2\eta }{\sqrt{\pi }}\exp \left( \frac{k^2}{4\eta ^2}\right) -ik. \end{aligned}$$
(A.2)

The presence of complementary error functions makes the above sums rapidly convergent. The optimal choice of Ewald’s separation parameter, \(\eta _{opt}=\sqrt{\pi /A}\) guarantees that approximately equal number of terms in sums over \(\mathbf{n}\) and \(\mathbf{m}\) are necessary to achieve the convergence. However, as discussed in [18], at high energies the loss of numerical accuracy occurs due to subtractions of large terms of the order of \(\exp (k^2/(4\eta ^2))\). To limit this exponent to maximum value of \(\exp (H^2)\) one has to choose

$$\begin{aligned} \eta _\mathrm{opt}=\mathrm{max}\left( \sqrt{\frac{\pi }{A}},\frac{k}{2H}\right) . \end{aligned}$$
(A.3)

In all our calculations, we obtained stable results with \(H=3\).

Another useful form of \(S_{k,\mathbf{q}}'(\mathbf{0}, 0)\) was derived in [11] (equation 1.6.26, p.214),

$$\begin{aligned} S_{k,\mathbf{q}}'(\mathbf{0}, 0)=\lim _{\omega \rightarrow \infty }\left( \frac{2\pi i }{A}\sum _{\mathbf{m},|\mathbf{q_{\mathbf{m}}}|\le \omega } \frac{1}{k_{z\mathbf{m}}}-\omega \right) -ik, \end{aligned}$$
(A.4)

where \(k_{z\mathbf{m}}\) is defined in (14). For the scattering problems \(q^2< k^2<+\infty \), we have

$$\begin{aligned}&\Re S_{k,\mathbf{q}}'(\mathbf{0}, 0)\nonumber \\&\quad =\lim _{\omega \rightarrow \infty }\left( \frac{2\pi }{A}\sum _{\mathbf{m}, k<|\mathbf{q_{\mathbf{m}}}|\le \omega }\frac{1}{\sqrt{|\mathbf{q_m}|^2-k^2}}-\omega \right) , \end{aligned}$$
(A.5)
$$\begin{aligned}&\Im S_{k,\mathbf{q}}'(\mathbf{0}, 0)= \frac{2\pi }{A}\sum _{\mathbf{m},|\mathbf{q_{\mathbf{m}}}|\le k} \frac{1}{\sqrt{k^2-| \mathbf{q_m}|^2}}-k. \end{aligned}$$
(A.6)

For band structures, in the interval \( 0<k^2<q^2\), we have

$$\begin{aligned}&\Re S_{k,\mathbf{q}}'(\mathbf{0}, 0)\nonumber \\&\quad =\lim _{\omega \rightarrow \infty }\left( \frac{2\pi }{A}\sum _{\mathbf{m}, |\mathbf{q_{\mathbf{m}}}|\le \omega }\frac{1}{\sqrt{|\mathbf{q_m}|^2-k^2}}-\omega \right) , \end{aligned}$$
(A.7)
$$\begin{aligned}&\Im S_{k,\mathbf{q}}'(\mathbf{0}, 0)=-k, \end{aligned}$$
(A.8)

while in the interval \( -\infty<k^2<0\) (\(k=i|k|\)) we have

$$\begin{aligned}&\Re S_{k,\mathbf{q}}'(\mathbf{0}, 0)\nonumber \\&\quad =\lim _{\omega \rightarrow \infty }\left( \frac{2\pi }{A}\sum _{\mathbf{m}, |\mathbf{q_{\mathbf{m}}}|\le \omega }\frac{1}{\sqrt{|\mathbf{q_m}|^2-k^2}}-\omega \right) +|k|, \end{aligned}$$
(A.9)
$$\begin{aligned}&\Im S_{k,\mathbf{q}}'(\mathbf{0}, 0)=0. \end{aligned}$$
(A.10)

Appendix B: Zeroth threshold

For the zeroth threshold (\(t=0\)) we have \(k_0=0, k_{z 0}=k_z, N_0=1, \mathbf{m}_1^0=(0,0),\tilde{\mathbf{q}}_{\mathbf{m}^0_1}=0, \tilde{S}^0_{jj'}=1\). Consequently, \(\det \tilde{\mathbf{S}}^0=1,0\) for \(N=1,N>1\) and \(\det \tilde{\mathbf{S}}^{jj'0}=1,1,0\) for \(N=1,2,N>2\). Direct calculations using (45) for \(N=1\) and \(N=2\) show that \({\tilde{A}}_{\mathbf{0}}^{\pm }= -1\) (see also Sects. 6 and 7). In the case \(N>2\), we find

$$\begin{aligned}&F_N(\tilde{\mathbf{M}}^0, \tilde{\mathbf{S}}^0)= \left( \frac{Ak_{z}}{2\pi i}\right) ^{N-1}\sum _{\mu =1}^N\det [\tilde{\mathbf{M}}^0_{N-1}|\tilde{\mathbf{S}}^0_1]_\mu \nonumber \\&\qquad +\left( \frac{Ak_{z}}{2\pi i}\right) ^N\det \tilde{\mathbf{M}}^0, \end{aligned}$$
(B.11)
$$\begin{aligned}&F_{N-1}(\tilde{\mathbf{M}}^{jj'0}, \tilde{\mathbf{S}}^{jj'0})\nonumber \\&\quad = \left( \frac{Ak_{z}}{2\pi i}\right) ^{N-2}\sum _{\mu =1}^{N-1}\det [\tilde{\mathbf{M}}^{jj'0}_{N-2}|\tilde{\mathbf{S}}^{jj'0}_1]_\mu \nonumber \\&\qquad +\left( \frac{Ak_{z}}{2\pi i}\right) ^{N-1}\det \tilde{\mathbf{M}}^{jj'0}. \end{aligned}$$
(B.12)

It can be shown that

$$\begin{aligned}&\sum _{jj'}(-1)^{j+j'}\sum _{\mu =1}^{N-1}\det [\tilde{\mathbf{M}}^{jj'0}_{N-2}|\tilde{\mathbf{S}}^{jj'0}_1]_\mu =0, \end{aligned}$$
(B.13)
$$\begin{aligned}&\sum _{jj'}(-1)^{j+j'}\det \mathbf{M}^{j'j0}=\sum _{j=1}^N\det [\tilde{\mathbf{M}}^0_{N-1}|\tilde{\mathbf{S}}^0_1]_j, \end{aligned}$$
(B.14)

and consequently

$$\begin{aligned}&\sum _{jj'}(-1)^{j+j'}F_{N-1}(\tilde{\mathbf{M}}^{j'j0}, \tilde{\mathbf{S}}^{j'j0})\nonumber \\&\quad =\left( \frac{Ak_{z}}{2\pi i}\right) ^{N-1}\sum _{\mu =1}^N\det [\tilde{\mathbf{M}}^0_{N-1}|\tilde{\mathbf{S}}^0_1]_\mu . \end{aligned}$$
(B.15)

Taking into account that the exponent in (45) is equal to 1 at \(k=0\), and substituting (B.11) and (B.15) in (45), we find that \({\tilde{A}}_{\mathbf{0}}^{\pm }=-1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grozdanov, T.P., Solov’ev, E.A. 3D scattering by 2D periodic zero-range potentials: total reflection/transmission and threshold effects. Eur. Phys. J. B 95, 16 (2022). https://doi.org/10.1140/epjb/s10051-022-00279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00279-z

Navigation