Skip to main content
Log in

Thermal spin–orbit torque in spintronics

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively.

Graphic abstract

We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: We make an iteration procedure to solve the differential equations group until it converges, we only keep the final data which is converged and plot it in figure, and don't keep the data before converge, because they haven't meet the requirement of accuracy.]

References

  1. G.E.W. Bauer, E. Saitoh, B.J. Van Wees, Nat. Mat. 11, 391 (2012)

    Article  Google Scholar 

  2. A. Manchon, S. Zhang, Phys. Rev. B 78, 212405 (2008)

    Article  ADS  Google Scholar 

  3. A. Manchon, S. Zhang, Phys. Rev. B 79, 094422 (2009)

    Article  ADS  Google Scholar 

  4. A. Matos-Abiague, R.L. Rodrıguez-Suarez, Phys. Rev. B 80, 094424 (2009)

    Article  ADS  Google Scholar 

  5. K.M.D. Hals, A. Brataas, Phys. Rev. B 88, 085423 (2013)

    Article  ADS  Google Scholar 

  6. A. Brataas, A.D. Kent, H. Ohno, Nat. Mat. 11, 372 (2012)

    Article  Google Scholar 

  7. A.R. Mellnik et al., Nature 511, 449 (2014)

    Article  ADS  Google Scholar 

  8. M. Cubukcu et al., App. Phys. Lett. 104, 042406 (2014)

    Article  ADS  Google Scholar 

  9. L. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhman, Science 336, 555 (2012)

    Article  ADS  Google Scholar 

  10. I.M. Miron et al., Nature 476, 189 (2011)

    Article  ADS  Google Scholar 

  11. A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, Nat. Mat. 14, 871 (2015)

    Article  Google Scholar 

  12. X.L. Zhang, L.F. Liu, W.M. Liu, Sci. Rep. 3, 2908 (2013)

    Article  Google Scholar 

  13. Z.F. Jiang, R.D. Li, S.C. Zhang, W.M. Liu, Phys. Rev. B 72, 045201 (2005)

    Article  ADS  Google Scholar 

  14. A.C. Ji, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 99, 183602 (2007)

    Article  ADS  Google Scholar 

  15. M. Hatami, G.E.W. Bauer, Q. Zhang, P.J. Kelly, Phys. Rev. Lett. 99, 066603 (2007)

    Article  ADS  Google Scholar 

  16. F. Freimuth, S. Blügel, Y. Mokrousov, J. Phys. Condens. Matt. 26, 104202 (2014)

    Article  Google Scholar 

  17. G. Géranton, F. Freimuth, S. Blügel, Y. Mokrousov, Phys. Rev. B 91, 014417 (2015)

    Article  ADS  Google Scholar 

  18. A. Manchon, P.B. Ndiaye, J.H. Moon, H.W. Lee, K.J. Lee, Phys. Rev. B 90, 224403 (2014)

    Article  ADS  Google Scholar 

  19. A.A. Kovalev, V. Zyuzin, Phys. Rev. B 93, 161106 (2016)

    Article  ADS  Google Scholar 

  20. K.S. Lee, S.W. Lee, B.C. Min, K.J. Lee, Appl. Phys. Lett. 104, 072413 (2014)

    Article  ADS  Google Scholar 

  21. R.L. Conte et al., Appl. Phys. Lett. 105, 122404 (2014)

    Article  ADS  Google Scholar 

  22. C.O. Avci et al., Phys. Rev. B 90, 224427 (2014)

    Article  ADS  Google Scholar 

  23. T.H. Pham et al., Phys. Rev. Appl. 9, 064032 (2018)

    Article  ADS  Google Scholar 

  24. F. Freimuth, S. Blügel, Y. Mokrousov, J. Phys. Condens. Matter 28, 316001 (2016)

    Article  ADS  Google Scholar 

  25. J. Zhang, P.M. Levy, S. Zhang, V. Antropov, Phys. Rev. Lett. 93, 256602 (2004)

    Article  ADS  Google Scholar 

  26. L. Sheng, D.Y. Xing, Z.D. Wang, J. Dong, Phys. Rev. B 55, 5908 (1997)

    Article  ADS  Google Scholar 

  27. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 27204 (2004)

    ADS  Google Scholar 

  28. Z.C. Wang, Eur. Phys. J. B86, 206 (2013)

    Article  ADS  Google Scholar 

  29. L.Z. Zhang, Z.C. Wang, G. Su, Europhys. Lett. 88, 47003 (2009)

    Article  ADS  Google Scholar 

  30. Y.H. Chen, H.S. Tao, D.X. Yao, W.M. Liu, Phys. Rev. Lett. 108, 246402 (2012)

    Article  ADS  Google Scholar 

  31. C. Yang, Z.C. Wang, Q.R. Zheng, G. Su, Eur. Phys. J. B 92, 136 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study are supported by the National Key R&D Program of China (Grant no. 2018FYA0305804), and the Key Research Program of the Chinese Academy of Sciences (Grant no. XDPB08-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Chuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZC. Thermal spin–orbit torque in spintronics. Eur. Phys. J. B 95, 15 (2022). https://doi.org/10.1140/epjb/s10051-022-00275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00275-3

Navigation