Skip to main content
Log in

Influence of sodium inward current on the dynamical behaviour of modified Morris-Lecar model

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper presents a modified Morris-Lecar model by incorporating the sodium inward current. The dynamical behaviour of the model in response to key parameters is investigated. The model exhibits various excitability properties as the values of parameters are varied. We have examined the effects of changes in maximum ion conductances and external current on the dynamics of the membrane potential. A detailed numerical bifurcation analysis is conducted. The bifurcation structures obtained in this study are not present in existing bifurcation studies of the original Morris-Lecar model. The results in this study provide the interpretation of electrical activity in excitable cells and a platform for further study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The XPPAUT and MATCONT code in this study are available from the corresponding author upon reasonable request.]

References

  1. T. Azizi, B. Alali, Impact of chloride channel on spiking patterns of Morris-Lecar model. Appl. Math. 11, 650–669 (2020)

    Article  Google Scholar 

  2. T. Azizi, R. Mugabi, The phenomenon of neural bursting and spiking in neurons: Morris-Lecar model. Appl. Math. 11, 203–226 (2020)

    Article  Google Scholar 

  3. B. Bao, Q. Yang, L. Zhu, H. Bao, Q. Xu, Y. Yu, M. Chen, Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations. Int. J. Bifurc. Chaos 29, 1950134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Berra-Romani, M.P. Blaustein, D.R. Matteson, TTX-sensitive voltage-gated \(\text{ Na}^{+}\) channels are expressed in mesenteric artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 289, H137–H145 (2005)

    Article  Google Scholar 

  5. T.R. Chay, Chaos in a three-variable model of an excitable cell. Phys. D Nonlinear Phenom. 16(2), 233–242 (1985)

    Article  ADS  MATH  Google Scholar 

  6. A. Dhooge, W. Govaerts, Y.A. Kuznetsov, MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Soft. 29, 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Duan, D. Zhai, X. Tang, Q. Lu, Bursting and mode transitions in coupled nonidentical modified morris-lecar neurons. In: 2010 International Workshop on Chaos-Fractal Theories and Applications, pp. 293–296 (2010)

  8. B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (SIAM Press, Philadelphia, 2002)

    Book  MATH  Google Scholar 

  9. B. Ermentrout, D. Terman, Foundations of Mathematical Neuroscience (Springer, New York, 2008)

    MATH  Google Scholar 

  10. H. Fatoyinbo, Pattern Formation in Electrically Coupled Pacemaker Cells. PhD thesis, Massey University, Manawat, New Zealand (2020)

  11. H.O. Fatoyinbo, R.G. Brown, D.J.W. Simpson, B. van Brunt, Numerical bifurcation analysis of pacemaker dynamics in a model of smooth muscle cells. Bull Math Bio 82(95), 1–22 (2020)

  12. R. FitzHugh, Impulses and physiological states in theoretical model of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  ADS  Google Scholar 

  13. H. Fujii, I. Tsuda, Neocortical gap junction-coupled interneuron systems may induce chaotic behaviour itinerant among quasi-attractors exhibiting transient synchrony. Neurocomputing 58–60, 151–157 (2004)

    Article  Google Scholar 

  14. W. Gall, Y. Zhou, Including a second inward conductance in Morris and Lecar dynamics. Neurocomputing 26–27, 131–136 (1999)

    Article  MATH  Google Scholar 

  15. J.M. Gonzalez-Fernandez, B. Ermentrout, On the origin and dynamics of the vasomotion of small arteries. Math. Biosci. 119, 127–167 (1994)

    Article  MATH  Google Scholar 

  16. J.M. González-Miranda, Pacemaker dynamics in the full Morris-Lecar model. Commun. Nonlinear Sci. Numer. Simul. 19, 3229–3241 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Gottschalk, P. Haney, Computational aspects of anesthetic action in simple neural models. Anesthesiology 98, 548–564 (2003)

    Article  Google Scholar 

  18. W. Govaerts, B. Sautois, The onset and extinction of neural spiking: a numerical bifurcation approach. J. Comput. Neurosci. 18(3), 265–274 (2005)

    Article  MathSciNet  Google Scholar 

  19. H. Hartle, R. Wackerbauer, Transient chaos and associated system-intrinsic switching of spacetime patterns in two synaptically coupled layers of Morris-Lecar neurons. Phys. Rev. E 96, 032223 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  21. K.J. Iremonger, A.E. Herbison, Initiation and propagation of action potentials in gonadotropin-releasing hormone neuron dendrites. J. Neurosci. 32(1), 151–158 (2020)

    Article  Google Scholar 

  22. E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press, Cambridge, 2007)

    Google Scholar 

  23. B. Jia, Negative feedback mediated by fast Inhibitory autapse enhances neuronal oscillations near a Hopf bifurcation point. Int. J. Bifurc. Chaos 28(2), 1850030 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Jo, T. Nagata, H. Iida, H. Imuta, K. Iwasawa, J. Ma, K. Hara, M. Omata, R. Nagai, H. Takizawa, T. Nagase, T. Nakajima, Voltage-gated sodium channel expressed in cultured human smooth muscle cells: involvement of SCN9A. FEBS Lett. 567(2–3), 339–343 (2004)

    Article  Google Scholar 

  25. J. Keener, J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics, vol. 8/1 (Springer, New York, 2009)

    MATH  Google Scholar 

  26. R.D. Keynes, E. Rojas, R.E. Taylor, J.L. Vergara, Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J. Physiol. 229, 409–455 (1973)

    Article  Google Scholar 

  27. P. Kügler, M. Bulelzai, A. Erhardt, Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations. BMC Syst. Biol. 11(42), 1–13 (2017)

  28. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edn. (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  29. J. Lafranceschina, R. Wackerbauer, Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network. Chaos 25, 013119 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Lv, J. Wang, G. Ren, J. Ma, X. Song, Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  31. A.C. Marreiros, S.J. Kiebel, J. Daunizeau, L.M. Harrison, K.J. Friston, Population dynamics under the laplace assumption. Neuroimage 44, 701–714 (2009)

    Article  Google Scholar 

  32. S.R. Meier, J.L. Lancaster, J.M. Starobin, Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium. PLoS One 10(3), 1–25 (2015)

    Article  Google Scholar 

  33. A. Mondal, R.K. Upadhyay, J. Ma, B.K. Yadav, S.K. Sharma, Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13(4), 393–407 (2019)

    Article  Google Scholar 

  34. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

  35. S.S. Muni, A. Provata, Chimera states in ring-star network of Chua circuits. Nonlinear Dyn. 101, 2509–2521 (2020)

    Article  Google Scholar 

  36. J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  37. S.A. Prescott, S. Ratté, Y. De Koninck, T.J. Sejnowski, Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. J. Neurosci. 11(36), 9084–9097 (2006)

    Article  Google Scholar 

  38. S.A. Prescott, Y. De Koninck, T.J. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4, 1000198 (2008)

    Article  MathSciNet  Google Scholar 

  39. K. Rajagopal, I. Moroz, B. Ramakrishnan, A. Karthikeyn, P. Duraisamy, Modified Morris-Lecar neuron model: effects of very low frequency electric fields and of magnetic fields on the local and network dynamics of an excitable media. Nonlinear Dyn. 104, 4427–4443 (2021)

    Article  Google Scholar 

  40. R. Seydel, Practical Bifurcation and Stability Analysis, vol. 5 (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  41. I.A. Shepelev, A.V. Bukh, S.S. Muni, V. Anishchenko, Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der pol oscillators. Chaos Soliton. Fract. 135, 109725 (2020)

    Article  MathSciNet  Google Scholar 

  42. I.A. Shepelev, S.S. Muni, T.E. Vadivasova, Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling. Chaos 31, 021104 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. P. Smolen, J. Keizer, Slow voltage inactivation of \(\text{ Ca}^{2+}\) currents and bursting mechanisms for the mouse pancreatic \(\beta \)-cell. J. Membrane Biol. 127, 9–19 (1992)

    Google Scholar 

  44. K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, H. Kawakami, Bifurcations in Morris-Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)

    Article  Google Scholar 

  45. A.V. Ulyanova, R.E. Shirokov, Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles. PLoS One 13(4), e0194980 (2018)

    Article  Google Scholar 

  46. R.K. Upadhyay, A. Mondal, W.W. Teka, Mixed mode oscillations and synchronous activity in noise induced modified Morris-Lecar neural system. Int. J. Bifurc. Chaos 27, 1730019 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Wang, L. Wang, L. Yu, Y. Chen, Response of Morris-Lecar neurons to various stimuli. Phys. Rev. E 83, 021915 (2011)

    Article  ADS  Google Scholar 

  48. F. Zeldenrust, P.J.P. Chameau, W.J. Wadman, Reliability of spike and burst firing in thalamocortical relay cells. J. Comput. Neurosci. 35, 317–334 (2013)

    Article  Google Scholar 

  49. Z. Zhao, H. Gu, Transitions between classes of neuronal excitability and bifurcations induced by autapse. Sci. Rep. 7(1), 6760 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the extensive and constructive comments from the anonymous reviewers. SSM acknowledges Dr. Astero Provata for providing feedback, discussions on the manuscript and the School of Fundamental Sciences doctoral bursary funding during this research.

Author information

Authors and Affiliations

Authors

Contributions

The presented idea was conceived by HOF. He wrote the MATCONT and XPPAUT codes. HOF and SSM carried out the numerical simulations and generated the figures. AA aided in the interpretation of the results. All authors jointly prepared the manuscript.

Corresponding author

Correspondence to H. O. Fatoyinbo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatoyinbo, H.O., Muni, S.S. & Abidemi, A. Influence of sodium inward current on the dynamical behaviour of modified Morris-Lecar model. Eur. Phys. J. B 95, 4 (2022). https://doi.org/10.1140/epjb/s10051-021-00269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00269-7

Navigation