Skip to main content
Log in

Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Advances in synthesizing colloidal nanoparticles with tailored interactions through surface modifications provide vast possibilities to create new materials through self-assembly. Alongside experimental advances, computational methods are contributing to rational materials-by-design by inversely optimizing building blocks capable of self-assembling into target structures. Radially symmetric (isotropic) pair potentials are commonly used to model interacting particles in such a design process. In this work, we apply an inverse design approach called ‘digital alchemy’ to a generalized Fourier potential (FP) to search a broad design space of isotropic pair interactions targeting 23 crystal structures spanning a range of complexities. Digital alchemy (DA) is a method for optimizing nanoparticle attributes (such as interaction strength and range, and even particle shape) for a target structure in a generalized thermodynamic framework where the attributes are treated as fluctuating thermodynamic variables in situ. Using DA, we find six optimized isotropic interaction potentials that produce six corresponding targeted crystal structures via self-assembly. Importantly, these six are those cases where the optimized potential for the target structure and the ground state structure at zero temperature for the corresponding potential coincide. In these cases, the optimized pair potential is the “best” potential for the crystal structure and the crystal structure is, conversely, the “best” structure for the pair potential. For other cases, we show that although most of the optimized isotropic pair potentials stabilize their corresponding target structures, the structures do not self-assemble when the target structure has structurally similar polymorphs. In such cases, we obtain a family of nearly identical optimized potentials for the set of similar structures, and only one of them—the structure that minimizes the energy (i.e. is “best”) for the obtained potential—can be successfully self-assembled. We discuss and provide insight into these limitations inherent in using isotropic pair potentials for inverse design.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All of the data acquired for this study is contained within the paper. Data in an alternate format can be made available upon request.]

References

  1. W.B. Rogers, W.M. Shih, V.N. Manoharan, Using dna to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1(3), 1–14 (2016)

    Article  Google Scholar 

  2. A. Jain, J.A. Bollinger, T.M. Truskett, Inverse methods for material design. AIChE J. 60, 2732–2740 (2014)

    Article  Google Scholar 

  3. A. Jain, J.R. Errington, T.M. Truskett, Inverse design of simple pairwise interactions with low-coordinated 3d lattice ground states. Soft Matter 9, 3866–3870 (2013)

    Article  ADS  Google Scholar 

  4. É. Marcotte, F.H. Stillinger, S. Torquato, Communication: Designed diamond ground state via optimized isotropic monotonic pair potentials. J. Chem. Phys. 138(6), 061101 (2013)

    Article  ADS  Google Scholar 

  5. B.A. Lindquist, R.B. Jadrich, T.M. Truskett, Communication: inverse design for self-assembly via on-the-fly optimization. J. Chem. Phys. 145(11), 111101 (2016)

    Article  ADS  Google Scholar 

  6. C.S. Adorf, J. Antonaglia, J. Dshemuchadse, S.C. Glotzer, Inverse design of simple pair potentials for the self-assembly of complex structures. J. Chem. Phys. 149(20), 204102 (2018)

    Article  ADS  Google Scholar 

  7. P. Zhou, J.C. Proctor, G. van Anders, S.C. Glotzer, Alchemical molecular dynamics for inverse design. Mol. Phys. 117(23–24), 3968–3980 (2019)

    Article  ADS  Google Scholar 

  8. M.Z. Miskin, H.M. Jaeger, Adapting granular materials through artificial evolution. Nat. Mater. 12, 326–331 (2013)

    Article  ADS  Google Scholar 

  9. M.Z. Miskin, H.M. Jaeger, Evolving design rules for the inverse granular packing problem. Soft Matter 10, 3708–3715 (2014)

    Article  ADS  Google Scholar 

  10. M.Z. Miskin, G. Khaira, J.J. de Pablo, H.M. Jaeger, Turning statistical physics models into materials design engines. Proc. Natl. Acad. Sci. USA 113(1), 34–39 (2016)

    Article  ADS  Google Scholar 

  11. A. Jain, J.R. Errington, T.M. Truskett, Dimensionality and design of isotropic interactions that stabilize honeycomb, square, simple cubic, and diamond lattices. Phys. Rev. X 4, 031049 (2014)

    Google Scholar 

  12. G. van Anders, D. Klotsa, A.S. Karas, P.M. Dodd, S.C. Glotzer, Digital alchemy for materials design: colloids and beyond. ACS Nano. 9, 9542–9553 (2015)

    Article  Google Scholar 

  13. M. Mihalkovič, C. Henley, Empirical oscillating potentials for alloys from ab initio fits and the prediction of quasicrystal-related structures in the al-cu-sc system. Phys. Rev. B 85(9), 0921022 (2012)

    Article  Google Scholar 

  14. M. Engel, P.F. Damasceno, C.L. Phillips, S.C. Glotzer, Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109–116 (2015)

    Article  ADS  Google Scholar 

  15. J. Dshemuchadse, P.F. Damasceno, C.L. Phillips, M. Engel, S.C. Glotzer, Moving beyond the constraints of chemistry via crystal structure discovery with isotropic multiwell pair potentials. Proc. Natl. Acad. Sci. 118, e2024034118 (2021)

  16. M. Engel, H.-R. Trebin, Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 98, 225505 (2007)

    Article  ADS  Google Scholar 

  17. E. Jagla, Phase behavior of a system of particles with core collapse. Phys. Rev. E 58(2), 1478 (1998)

    Article  ADS  Google Scholar 

  18. M. Rey, A.D. Law, D.M.A. Buzza, N. Vogel, Anisotropic self-assembly from isotropic colloidal building blocks. J. Am. Chem. Soc. 139(48), 17464–17473 (2017)

    Article  Google Scholar 

  19. W.D. Piñeros, M. Baldea, T.M. Truskett, Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices. J. Chem. Phys. 145(5), 054901 (2016)

    Article  ADS  Google Scholar 

  20. E. Edlund, O. Lindgren, M.N. Jacobi, Designing isotropic interactions for self-assembly of complex lattices. Phys. Rev. Lett. 107, 085503 (2011)

    Article  ADS  Google Scholar 

  21. E. Edlund, O. Lindgren, M.N. Jacobi, Using the uncertainty principle to design simple interactions for targeted self-assembly. J. Chem. Phys. 139(2), 024107 (2013)

    Article  ADS  Google Scholar 

  22. E.G. Teich, G. van Anders, S.C. Glotzer, Identity crisis in alchemical space drives the entropic colloidal glass transition. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  23. J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comp. Phys. 227(10), 5342–5359 (2008)

    Article  ADS  Google Scholar 

  24. J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse, S.C. Glotzer, Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015)

    Article  ADS  Google Scholar 

  25. R.A. LaCour, C.S. Adorf, J. Dshemuchadse, S.C. Glotzer, Influence of softness on the stability of binary colloidal crystals. ACS Nano. 13(12), 13829–13842 (2019)

    Article  Google Scholar 

  26. Y. Wang, I.C. Jenkins, J.T. McGinley, T. Sinno, J.C. Crocker, Colloidal crystals with diamond symmetry at optical length scales. Nat. Commun. 8(1), 1–8 (2017)

    Article  Google Scholar 

  27. N. Goldenfeld, Lectures on phase transitions and the renormalization group (CRC Press, Florida, 2018)

    Book  Google Scholar 

  28. D.A. McQuarrie, Statistical thermodynamics (Harper and Row, New York, 1973)

    Google Scholar 

  29. E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. OBrien, C.B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55–59 (2006)

    Article  ADS  Google Scholar 

  30. A. Travesset, Binary nanoparticle superlattices of soft-particle systems. Proc. Natl. Acad. Sci. 112(31), 9563–9567 (2015)

    Article  ADS  Google Scholar 

  31. N. Horst, A. Travesset, Prediction of binary nanoparticle superlattices from soft potentials. J. Chem. Phys. 144(1), 014502 (2016)

    Article  ADS  Google Scholar 

  32. Z. Zhang, S.C. Glotzer, Self-assembly of patchy particles. Nano Lett. 4(8), 1407–1413 (2004)

    Article  ADS  Google Scholar 

  33. Q. Chen, S.C. Bae, S. Granick, Directed self-assembly of a colloidal kagome lattice. Nature 469(7330), 381–384 (2011)

    Article  ADS  Google Scholar 

  34. X. Mao, Q. Chen, S. Granick, Entropy favours open colloidal lattices. Nat. Mater. 12(3), 217–222 (2013)

    Article  ADS  Google Scholar 

  35. A.B. Rao, J. Shaw, A. Neophytou, D. Morphew, F. Sciortino, R.L. Johnston, D. Chakrabarti, Leveraging hierarchical self-assembly pathways for realizing colloidal photonic crystals. ACS Nano 14, 5348–5359 (2020)

    Article  Google Scholar 

  36. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, N. Wilkins-Diehr, XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014)

Download references

Acknowledgements

Algorithm implementation and optimization in HOOMD-blue was supported by the National Science Foundation, Division of Materials Research award # DMR 1808342. Work implementing the test cases and model verification was sponsored by the Department of the Navy, Office of Naval Research under ONR award number N00014-18-1-2497. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) [36], which is supported by National Science Foundation grant number ACI-1548562; XSEDE award DMR 140129. Support for computational resources and services were provided by Advanced Research Computing at the University of Michigan, Ann Arbor.

Author information

Authors and Affiliations

Authors

Contributions

PZ designed the study, performed the simulations and analyzed the data. SCG supervised the work. Both authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Sharon C. Glotzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Glotzer, S.C. Inverse design of isotropic pair potentials using digital alchemy with a generalized Fourier potential. Eur. Phys. J. B 94, 243 (2021). https://doi.org/10.1140/epjb/s10051-021-00250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00250-4

Navigation