Skip to main content
Log in

Nodeless superconductivity in cuprates with Ba\(_2\)CuO\(_3\)-type structure

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, zero-temperature phase diagrams of cuprates with Ba\(_2\)CuO\(_3\)-type CuO chain structure are investigated. The projective symmetry group analysis is employed in the strong coupling limit, and the one-loop renormalization group with bosonization analysis is employed in the weak coupling limit. We find that in both of these two limits, large areas of the phase diagrams are filled with nodeless superconducting phases, instead of nodal d-wave phase mostly found in cuprates. This implies that nodeless superconducting phases are the dominant superconducting phases in cuprates with Ba\(_2\)CuO\(_3\)-type CuO chain structure in low temperature. Other phases are also found, including nodal superconducting phases and Luttinger liquid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theoretical study and no experimental data].

References

  1. E. Dagotto, Rev. Mod. Phys. 66(3), 763 (1994). https://doi.org/10.1103/RevModPhys.66.763

    Article  ADS  Google Scholar 

  2. A.J. Leggett, Nat. Phys. 2(3), 134 (2006). https://doi.org/10.1038/nphys254

    Article  Google Scholar 

  3. J.G. Bednorz, K.A. Müller, Zeitschrift für Physik B Condensed Matter 64(2), 189 (1986). https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  4. A. Schilling, M. Cantoni, J. Guo, H. Ott, Nature 363(6424), 56 (1993). https://doi.org/10.1038/363056a0

    Article  ADS  Google Scholar 

  5. L. Gao, Y. Xue, F. Chen, Q. Xiong, R. Meng, D. Ramirez, C. Chu, J. Eggert, H. Mao, Phys. Rev. B 50(6), 4260 (1994). https://doi.org/10.1103/PhysRevB.50.4260

    Article  ADS  Google Scholar 

  6. S. Chakravarty, A. Sudbø, P.W. Anderson, Strong S., Science 261(5119), 337 (1993). https://doi.org/10.1126/science.261.5119.337

    Article  ADS  Google Scholar 

  7. J. Kirtley, C. Tsuei, C. Verwijs, S. Harkema, H. Hilgenkamp et al., Nat. Phys. 2(3), 190 (2006). https://doi.org/10.1038/nphys215

    Article  Google Scholar 

  8. C. Tsuei, J.R. Kirtley, C. Chi, L.S. Yu-Jahnes, A. Gupta, T. Shaw, J. Sun, M. Ketchen, Phys. Rev. Lett. 73(4), 593 (1994). https://doi.org/10.1103/PhysRevLett.73.593

    Article  ADS  Google Scholar 

  9. C. Tsuei, J. Kirtley, Z. Ren, J. Wang, H. Raffy, Z. Li, Nature 387(6632), 481 (1997). https://doi.org/10.1038/387481a0

    Article  ADS  Google Scholar 

  10. D. Matsunaka, E.T. Rodulfo, H. Kasai, Solid State Commun. 134(5), 355 (2005). https://doi.org/10.1016/j.ssc.2005.01.039

    Article  ADS  Google Scholar 

  11. W. Li, J. Zhao, L. Cao, Z. Hu, Q. Huang, X. Wang, Y. Liu, G. Zhao, J. Zhang, Q. Liu et al., Proc. Natl. Acad. Sci. 116(25), 12156 (2019). https://doi.org/10.1073/pnas.1900908116

    Article  ADS  Google Scholar 

  12. W. Li, J. Zhao, L. Cao, Z. Hu, Q. Huang, X. Wang, R. Yu, Y. Long, H. Wu, H. Lin et al., J. Supercond. Novel Magn. 33(1), 81 (2020). https://doi.org/10.1007/s10948-019-05302-6

    Article  Google Scholar 

  13. K. Jiang, C. Le, Y. Li, S. Qin, Z. Wang, F. Zhang, J. Hu, Phys. Rev. B 103(4), 045108 (2021). https://doi.org/10.1103/PhysRevB.103.045108

    Article  ADS  Google Scholar 

  14. T. Maier, T. Berlijn, D. Scalapino, Phys. Rev. B 99(22), 224515 (2019). https://doi.org/10.1103/PhysRevB.99.224515

    Article  ADS  Google Scholar 

  15. Z. Wang, S. Zhou, W. Chen, F.C. Zhang, Phys. Rev. B 101(18), 180509 (2020). https://doi.org/10.1103/PhysRevB.101.180509

    Article  ADS  Google Scholar 

  16. K. Yamazaki, M. Ochi, D. Ogura, K. Kuroki, H. Eisaki, S. Uchida, H. Aoki, Phys. Rev. Res. 2(3), 033356 (2020). https://doi.org/10.1103/PhysRevResearch.2.033356

    Article  Google Scholar 

  17. Q. Zhang, K. Jiang, Y. Gu, J. Hu, Sci. China Phys. Mech. Astron. 63(7), 1 (2020). https://doi.org/10.1007/s11433-019-1495-3

    Article  ADS  Google Scholar 

  18. E.H. Lieb, Phys. Rev. Lett. 62(10), 1201 (1989). https://doi.org/10.1103/PhysRevLett.62.1201

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Liu, Z.Y. Lu, T. Xiang, Phys. Rev. Mater. 3(4), 044802 (2019). https://doi.org/10.1103/PhysRevMaterials.3.044802

    Article  Google Scholar 

  20. X.G. Wen, Phys. Rev. B 65(16), 165113 (2002). https://doi.org/10.1103/PhysRevB.65.165113

    Article  ADS  Google Scholar 

  21. Y. Zhou, X. G. Wen, arXiv preprint cond-mat/0210662 (2002). https://arxiv.org/abs/cond-mat/0210662

  22. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78(1), 17 (2006). https://doi.org/10.1103/RevModPhys.78.17

    Article  ADS  Google Scholar 

  23. A.V. Balatsky, I. Vekhter, J.X. Zhu, Rev. Mod. Phys. 78(2), 373 (2006). https://doi.org/10.1103/RevModPhys.78.373

    Article  ADS  Google Scholar 

  24. K. Seo, B.A. Bernevig, J. Hu, Phys. Rev. Lett. 101(20), 206404 (2008). https://doi.org/10.1103/PhysRevLett.101.206404

    Article  ADS  Google Scholar 

  25. M.M. Parish, J. Hu, B.A. Bernevig, Phys. Rev. B 78(14), 144514 (2008). https://doi.org/10.1103/PhysRevB.78.144514

    Article  ADS  Google Scholar 

  26. W.F. Tsai, D.X. Yao, B.A. Bernevig, J. Hu, Phys. Rev. B 80(1), 012511 (2009). https://doi.org/10.1103/PhysRevB.80.012511

    Article  ADS  Google Scholar 

  27. H.H. Lin, L. Balents, M.P. Fisher, Phys. Rev. B 56(11), 6569 (1997). https://doi.org/10.1103/PhysRevB.56.6569

    Article  ADS  Google Scholar 

  28. T. Tonegawa, K. Okamoto, T. Hikihara, T. Sakai, in Journal of Physics: Conference Series, vol. 828 (IOP Publishing, 2017), p. 012003. https://doi.org/10.1088/1742-6596/828/1/012003

  29. Q. Luo, S. Hu, J. Zhao, A. Metavitsiadis, S. Eggert, X. Wang, Phys. Rev. B 97(21), 214433 (2018). https://doi.org/10.1103/PhysRevB.97.214433

    Article  ADS  Google Scholar 

  30. G. Giri, D. Dey, M. Kumar, S. Ramasesha, Z.G. Soos, Phys. Rev. B 95(22), 224408 (2017). https://doi.org/10.1103/PhysRevB.95.224408

    Article  ADS  Google Scholar 

  31. D. Scalapino, S.C. Zhang, W. Hanke, Phys. Rev. B 58(1), 443 (1998). https://doi.org/10.1103/PhysRevB.58.443

    Article  ADS  Google Scholar 

  32. C. Wu, W.V. Liu, E. Fradkin, Phys. Rev. B 68(11), 115104 (2003). https://doi.org/10.1103/PhysRevB.68.115104

    Article  ADS  Google Scholar 

  33. L. Balents, M.P. Fisher, Phys. Rev. B 53(18), 12133 (1996). https://doi.org/10.1103/PhysRevB.53.12133

    Article  ADS  Google Scholar 

  34. D.G. Shelton, D. Sénéchal, Phys. Rev. B 58(11), 6818 (1998). https://doi.org/10.1103/PhysRevB.58.6818

    Article  ADS  Google Scholar 

  35. E. Orignac, T. Giamarchi, Phys. Rev. B 56(12), 7167 (1997). https://doi.org/10.1103/PhysRevB.56.7167

    Article  ADS  Google Scholar 

  36. H. Schulz, Phys. Rev. B 53(6), R2959 (1996). https://doi.org/10.1103/PhysRevB.53.R2959

    Article  ADS  Google Scholar 

  37. M. Fabrizio, Phys. Rev. B 48(21), 15838 (1993). https://doi.org/10.1103/PhysRevB.48.15838

  38. C. Varma, A. Zawadowski, Phys. Rev. B 32(11), 7399 (1985). https://doi.org/10.1103/PhysRevB.32.7399

  39. E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, Cambridge, 2013). https://doi.org/10.1017/CBO9781139015509

    Book  MATH  Google Scholar 

  40. A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75(2), 473 (2003). https://doi.org/10.1103/RevModPhys.75.473

    Article  ADS  Google Scholar 

  41. A. Schmidt, K. Fujita, E. Kim, M. Lawler, H. Eisaki, S. Uchida, D. Lee, J. Davis, New J. Phys. 13(6), 065014 (2011). https://doi.org/10.1088/1367-2630/13/6/065014

  42. R. Storn, K. Price, J. Glob. Optim. 11(4), 341 (1997). https://doi.org/10.1023/A:1008202821328

    Article  Google Scholar 

Download references

Acknowledgements

ZQG and KWS acknowledge Hui Yang, Jie-Ran Xue and Xue-Mei Wang for enlightening discussions. FW acknowledges support from The National Key Research and Development Program of China (Grant No. 2017YFA0302904), and the National Natural Science Foundation of China (Grant No. 11888101).

Author information

Authors and Affiliations

Authors

Contributions

FW conceived of the presented idea and directed the project. Z-QG developed the theoretical framework. K-WS performed the large-scale numerical computation. All three workers contribured to the final manuscript.

Corresponding author

Correspondence to Kai-Wei Sun.

Additional information

Zhi-Qiang Gao and Kai-Wei Sun contributed equally to this work.

Appendices

Classification of Z\(_2\) spin liquids phases in Ba\(_2\)CuO\(_{3+\delta }\)

1.1 Projective symmetry groups

Under coordinates we choose in Sect. 3, space group symmetries, including translation, parity, and inversion, read

$$\begin{aligned} T_x:(i_x,i_y,i_z)\mapsto & {} (i_x+1,i_y,i_z), \end{aligned}$$
(29)
$$\begin{aligned} T_y:(i_x,i_y,i_z)\mapsto & {} (i_x,i_y+1,i_z), \end{aligned}$$
(30)
$$\begin{aligned} T_z:(i_x,i_y,i_z)\mapsto & {} (i_x,i_y,i_z+1), \end{aligned}$$
(31)
$$\begin{aligned} P_x:(i_x,i_y,i_z)\mapsto & {} (-i_x-i_z,i_y,i_z), \end{aligned}$$
(32)
$$\begin{aligned} P_y:(i_x,i_y,i_z)\mapsto & {} (i_x,-i_y-i_z,i_z), \end{aligned}$$
(33)
$$\begin{aligned} I:(i_x,i_y,i_z)\mapsto & {} (-i_x,-i_y,-i_z), \end{aligned}$$
(34)

and the time-reversal symmetry is

$$\begin{aligned} {\mathcal {T}}:u_{ij}\mapsto -u_{ij}. \end{aligned}$$
(35)

The symmetries above satisfy equalities

$$\begin{aligned} T_x^{-1}T_y^{-1}T_xT_y= & {} 1, \end{aligned}$$
(36)
$$\begin{aligned} T_y^{-1}T_z^{-1}T_yT_z= & {} 1, \end{aligned}$$
(37)
$$\begin{aligned} T_z^{-1}T_x^{-1}T_zT_x= & {} 1, \end{aligned}$$
(38)
$$\begin{aligned} T_xP_xT_xP_x= & {} 1, \end{aligned}$$
(39)
$$\begin{aligned} T_yP_yT_yP_y= & {} 1, \end{aligned}$$
(40)
$$\begin{aligned} T_x^{-1}P_yT_xP_y= & {} 1, \end{aligned}$$
(41)
$$\begin{aligned} T_y^{-1}P_xT_yP_x= & {} 1, \end{aligned}$$
(42)
$$\begin{aligned} P_xT_xT_z^{-1}P_xT_z= & {} 1, \end{aligned}$$
(43)
$$\begin{aligned} P_yT_yT_z^{-1}P_yT_z= & {} 1, \end{aligned}$$
(44)
$$\begin{aligned} P_xP_yP_xP_y= & {} 1, \end{aligned}$$
(45)
$$\begin{aligned} P_x^2=P_y^2= & {} 1, \end{aligned}$$
(46)
$$\begin{aligned} T_xIT_xI= & {} 1, \end{aligned}$$
(47)
$$\begin{aligned} T_yIT_yI= & {} 1, \end{aligned}$$
(48)
$$\begin{aligned} T_zIT_zI= & {} 1, \end{aligned}$$
(49)
$$\begin{aligned} P_xIP_xI= & {} 1, \end{aligned}$$
(50)
$$\begin{aligned} P_yIP_yI= & {} 1, \end{aligned}$$
(51)
$$\begin{aligned} I^2= & {} 1. \end{aligned}$$
(52)

\({\mathcal {T}}\) commutes with all the space group symmetries. Following Ref [20], we can first determine \(G_x\), \(G_y\), \(G_z\), and \(G_T\) through Eqs. (36)–(38) and the commutation relations between \({\mathcal {T}}\) and translations. Unlike the 2D case [20], here we choose the gauge that

$$\begin{aligned} G_z(i)= & {} \tau ^0, \end{aligned}$$
(53)
$$\begin{aligned} G_x(i)= & {} \eta _x^{i_z}\tau ^0, \end{aligned}$$
(54)
$$\begin{aligned} G_y(i)= & {} \eta _y^{i_z}\eta _{xy}^{i_x}\tau ^0, \end{aligned}$$
(55)
$$\begin{aligned} G_T(i)= & {} g_T\eta _{xt}^{i_x}\eta _{yt}^{i_y}\eta _{zt}^{i_z}, \end{aligned}$$
(56)

where two gauge inequivalent choices of \(g_T\) are \(g_T=\tau ^0\) or \(i\tau ^3\), and seven \(\eta \)s are \(\pm 1\).

Then we consider parities \(P_x\) and \(P_y\). The PSG equations given by Eq. (39) to (46) read

$$\begin{aligned} G_x(P_x(i))G^{-1}_{P_x}(i+{\hat{x}})G_x(i+{\hat{x}})G_{P_x}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(57)
$$\begin{aligned} G_y^{-1}(P_x(i))G^{-1}_{P_x}(i)G_y(i)G_{P_x}(i-{\hat{y}})\in & {} {\mathcal {G}}, \end{aligned}$$
(58)
$$\begin{aligned} G_x^{-1}(P_y(i))G^{-1}_{P_y}(i)G_x(i)G_{P_y}(i-{\hat{x}})\in & {} {\mathcal {G}}, \end{aligned}$$
(59)
$$\begin{aligned} G_y(P_y(i))G^{-1}_{P_y}(i+{\hat{y}})G_y(i+{\hat{y}})G_{P_y}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(60)
$$\begin{aligned} G_{P_x}(i)G_x(P_x(i))G^{-1}_z(T_zT_x^{-1}P_x(i))\cdot \nonumber \\ G_{P_x}(T_zT_x^{-1}P_x(i))G_z(T_zT_x^{-1}(i))\in & {} {\mathcal {G}}, \end{aligned}$$
(61)
$$\begin{aligned} G_{P_y}(i)G_y(P_y(i))G^{-1}_z(T_zT_y^{-1}P_y(i))\cdot \nonumber \\ G_{P_y}(T_zT_y^{-1}P_y(i))G_z(T_zT_y^{-1}(i))\in & {} {\mathcal {G}}, \end{aligned}$$
(62)
$$\begin{aligned} G_{P_x}(i)G_{P_y}(P_x(i))G^{-1}_{P_x}(P_y(i))G^{-1}_{P_y}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(63)
$$\begin{aligned} G_{P_x}(i)G_{P_x}(P_x(i))\in & {} {\mathcal {G}}, \end{aligned}$$
(64)
$$\begin{aligned} G_{P_y}(i)G_{P_y}(P_y(i))\in & {} {\mathcal {G}}. \end{aligned}$$
(65)

Since \(P_x\) and \(P_y\) do not change \(i_z\), in our gauge Eq. (57) to (60) reduce to

$$\begin{aligned} G^{-1}_{P_x}(i+{\hat{x}})G_{P_x}(i)= & {} \eta _{xpx}\tau ^0, \end{aligned}$$
(66)
$$\begin{aligned} G^{-1}_{P_x}(i+{\hat{y}})G_{P_x}(i)= & {} \eta _{ypx}\eta _{xy}^{i_z}\tau ^0, \end{aligned}$$
(67)
$$\begin{aligned} G^{-1}_{P_y}(i+{\hat{x}})G_{P_y}(i)= & {} \eta _{xpy}\tau ^0, \end{aligned}$$
(68)
$$\begin{aligned} G^{-1}_{P_y}(i+{\hat{y}})G_{P_y}(i)= & {} \eta _{ypy}\tau ^0, \end{aligned}$$
(69)

which give \(G_{P_x}(i)\) and \(G_{P_y}(i)\) the generic form

$$\begin{aligned} G_{P_x}(i)= & {} g_{P_x}\varTheta _{P_x}(i_z)\eta _{xpx}^{i_x}\eta _{ypx}^{i_y}, \end{aligned}$$
(70)
$$\begin{aligned} G_{P_y}(i)= & {} g_{P_y}\varTheta _{P_y}(i_z)\eta _{xpy}^{i_x}\eta _{ypy}^{i_y}\eta _{xy}^{i_yi_z}, \end{aligned}$$
(71)

where \(\varTheta \)s are (\(\pm 1\))-valued functions of \(i_z\). Eq. (61) to (65) then reduce to

$$\begin{aligned} g_{P_x}^2\varTheta _{P_x}(i_z)\varTheta _{P_x}(i_z+1)\eta _{xpx}^{i_z+1}G_x(i)= & {} \eta _{5px} \tau ^0, \end{aligned}$$
(72)
$$\begin{aligned} g_{P_y}^2\varTheta _{P_y}(i_z)\varTheta _{P_y}(i_z+1)\eta _{xy}^{i_y}G_y(i)= & {} \eta _{5py} \tau ^0, \end{aligned}$$
(73)
$$\begin{aligned} g_{P_x}g_{P_y}g^{-1}_{P_x}g^{-1}_{P_y}(\eta _{xpy}\eta _{ypx})^{i_z}= & {} \pm \tau ^0, \end{aligned}$$
(74)
$$\begin{aligned} g^2_{P_x}\eta _{xpx}^{i_z}= & {} \pm \tau ^0, \end{aligned}$$
(75)
$$\begin{aligned} g^2_{P_y}(\eta _{ypy}\eta _{xy})^{i_z}= & {} \pm \tau ^0, \end{aligned}$$
(76)

for all sites i. Eq. (74) to (76) require that

$$\begin{aligned} \eta _{xpy}=\eta _{ypx},\eta _{xy}=\eta _{xpx}=\eta _{ypy}=1, \end{aligned}$$
(77)

while Eqs. (72) and (73) give two \(\varTheta \)s a specific form. All gauge inequivalent \(\varTheta \)s are

$$\begin{aligned} \varTheta _{P_x}(i_z)= & {} \eta _{5px}^{i_z},\text { for }G_x(i)=\tau ^0; \end{aligned}$$
(78)
$$\begin{aligned} \varTheta _{P_y}(i_z)= & {} \eta _{5py}^{i_z},\text { for }G_y(i)=\tau ^0; \end{aligned}$$
(79)
$$\begin{aligned} \varTheta _{P_x}(i_z)= & {} \eta _{5px}^{i_z}\cdot \sqrt{2}\sin (\frac{\pi }{2}i_z+\frac{\pi }{4}),\nonumber \\ \text {for }G_x(i)= & {} (-)^{i_z}\tau ^0; \end{aligned}$$
(80)
$$\begin{aligned} \varTheta _{P_y}(i_z)= & {} \eta _{5py}^{i_z}\cdot \sqrt{2}\sin (\frac{\pi }{2}i_z+\frac{\pi }{4}),\nonumber \\ \text {for }G_y(i)= & {} (-)^{i_z}\tau ^0. \end{aligned}$$
(81)

Finally we consider inversion I. Equations (47) to (49) induce PSG equations

$$\begin{aligned} G_x(I(i))G_{I}(i+{\hat{x}})G_x(i+{\hat{x}})G_{I}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(82)
$$\begin{aligned} G_y(I(i))G_{I}(i+{\hat{y}})G_y(i+{\hat{y}})G_{I}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(83)
$$\begin{aligned} G_z(I(i))G_{I}(i+{\hat{z}})G_z(i+{\hat{z}})G_{I}(i)\in & {} {\mathcal {G}}. \end{aligned}$$
(84)

Under our gauge, \(G_{I}(i)\) has the generic form

$$\begin{aligned} G_{I}(i)=g_I\eta _{xI}^{i_x}\eta _{yI}^{i_y}\eta _{zI}^{i_z}. \end{aligned}$$
(85)

According to Eqs. (50) and (51),

$$\begin{aligned} G_I(P_x(i))G^{-1}_{P_x}(I(i))G_x(I(i))G_{P_x}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(86)
$$\begin{aligned} G_I(P_y(i))G^{-1}_{P_y}(I(i))G_y(I(i))G_{P_y}(i)\in & {} {\mathcal {G}}, \end{aligned}$$
(87)

we have

$$\begin{aligned} g_Ig^{-1}_{P_x}g_Ig_{P_x}\eta _{xI}^{i_z}= & {} \pm \tau ^0, \end{aligned}$$
(88)
$$\begin{aligned} g_Ig^{-1}_{P_y}g_Ig_{P_y}\eta _{yI}^{i_z}= & {} \pm \tau ^0, \end{aligned}$$
(89)

for all sites i. Therefore, \(\eta _{xI}=\eta _{yI}=1\). From just the same argument, \(\eta _{xt}=\eta _{yt}=1\). Then, Eqs. (56), (70), (71) and (85) reduce to

$$\begin{aligned} G_T(i)= & {} g_T\eta _{t}^{i_z}, \end{aligned}$$
(90)
$$\begin{aligned} G_{P_x}(i)= & {} g_{P_x}\varTheta _{P_x}(i_z)\eta _{p}^{i_y}, \end{aligned}$$
(91)
$$\begin{aligned} G_{P_y}(i)= & {} g_{P_y}\varTheta _{P_y}(i_z)\eta _{p}^{i_x}, \end{aligned}$$
(92)
$$\begin{aligned} G_I(i)= & {} g_I\eta _{I}^{i_z}, \end{aligned}$$
(93)

where \(\eta _{t}\), \(\eta _{p}\) and \(\eta _{I}\) can take value of \(\pm 1\), and \(\varTheta _{P_x}(i_z)\) and \(\varTheta _{P_y}(i_z)\) are determined above. The constraints of gs reduce to

$$\begin{aligned} g_{P_x}^2=g_{P_y}^2=g_I^2= & {} \pm \tau ^0, \end{aligned}$$
(94)
$$\begin{aligned} g_{P_x}g_{P_y}g^{-1}_{P_x}g^{-1}_{P_y}= & {} \pm \tau ^0, \end{aligned}$$
(95)
$$\begin{aligned} g_Ig^{-1}_{P_x}g_Ig_{P_x}= & {} \pm \tau ^0, \end{aligned}$$
(96)
$$\begin{aligned} g_Ig^{-1}_{P_y}g_Ig_{P_y}= & {} \pm \tau ^0, \end{aligned}$$
(97)
$$\begin{aligned} g_Tg^{-1}_{P_x}g_Tg_{P_x}= & {} \pm \tau ^0, \end{aligned}$$
(98)
$$\begin{aligned} g_Tg^{-1}_{P_y}g_Tg_{P_y}= & {} \pm \tau ^0, \end{aligned}$$
(99)
$$\begin{aligned} g_Ig^{-1}_Tg_Ig_T= & {} \pm \tau ^0. \end{aligned}$$
(100)

All gauge inequivalent choices of gs are

$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=\tau ^0\quad g_{P_y}=\tau ^0\quad g_I=\tau ^0; \end{aligned}$$
(101)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^3; \end{aligned}$$
(102)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=\tau ^0\quad g_I=\tau ^0; \end{aligned}$$
(103)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^3; \end{aligned}$$
(104)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^1; \end{aligned}$$
(105)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=\tau ^0\quad g_I=\tau ^0; \end{aligned}$$
(106)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^3\quad g_I=\tau ^0; \end{aligned}$$
(107)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=\tau ^0\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^3; \end{aligned}$$
(108)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=\tau ^0\quad g_I=\tau ^0; \end{aligned}$$
(109)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^3\quad g_I=\tau ^0; \end{aligned}$$
(110)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^3; \end{aligned}$$
(111)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=\tau ^0\quad g_I=\tau ^0; \end{aligned}$$
(112)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^1\quad g_I=\tau ^0; \end{aligned}$$
(113)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^1; \end{aligned}$$
(114)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^3\quad g_I=\tau ^0; \end{aligned}$$
(115)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^3; \end{aligned}$$
(116)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^3; \end{aligned}$$
(117)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^3\quad g_I=\tau ^0; \end{aligned}$$
(118)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^3; \end{aligned}$$
(119)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^3; \end{aligned}$$
(120)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^1\quad g_I=\tau ^0; \end{aligned}$$
(121)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^0\quad g_I=i\tau ^1; \end{aligned}$$
(122)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^1; \end{aligned}$$
(123)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^1\quad g_I=\tau ^0; \end{aligned}$$
(124)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^1\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^3; \end{aligned}$$
(125)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^1; \end{aligned}$$
(126)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^1\quad g_I=\tau ^0; \end{aligned}$$
(127)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^3; \end{aligned}$$
(128)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^1; \end{aligned}$$
(129)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^3\quad g_I=\tau ^0; \end{aligned}$$
(130)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=\tau ^0\quad g_I=i\tau ^1; \end{aligned}$$
(131)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=\tau ^0\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^3; \end{aligned}$$
(132)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^1; \end{aligned}$$
(133)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^3; \end{aligned}$$
(134)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^3; \end{aligned}$$
(135)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^1; \end{aligned}$$
(136)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^3; \end{aligned}$$
(137)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^3; \end{aligned}$$
(138)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^1; \end{aligned}$$
(139)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^1; \end{aligned}$$
(140)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^3; \end{aligned}$$
(141)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^2; \end{aligned}$$
(142)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^2\quad g_I=i\tau ^1; \end{aligned}$$
(143)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^2\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^1; \end{aligned}$$
(144)
$$\begin{aligned} g_T= & {} \tau ^0\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^2\quad g_I=i\tau ^3; \end{aligned}$$
(145)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^1\quad g_{P_y}=i\tau ^2\quad g_I=i\tau ^3; \end{aligned}$$
(146)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^3\quad g_{P_y}=i\tau ^1\quad g_I=i\tau ^2; \end{aligned}$$
(147)
$$\begin{aligned} g_T= & {} i\tau ^3\quad g_{P_x}=i\tau ^2\quad g_{P_y}=i\tau ^3\quad g_I=i\tau ^1. \end{aligned}$$
(148)

There are 48 different gauge inequivalent choices of gs. Therefore, the total number of PSGs is \(48\times 2^5\times 4=6144\). However, when \(g_T=\tau ^0\), to acquire non-vanishing ansatzes, \(\eta _T\) must be identical to [20] \(-1\). Therefore, \(15\times 2^4\times 4=960\) PSGs are killed and the total number of PSGs reduces to 5184.

1.2 Ansatzes of the nearest-neighbour spin coupling model

In this section we assume that only \(u_{i,i+x}\), \(u_{i,i+y}\), \(u_{i,i+z}\), \(u_{i,i-x+z}\), \(u_{i,i-y+z}\) and \(u_{i,i-x-y+z}\) are non-vanishing. First, an ansatz \(u_{i,i+m}\) under \(T_xG_x\), \(T_yG_y\) and \(T_zG_z\) reads

$$\begin{aligned} u_{i,i+m}=\eta _x^{i_xm_z}\eta _y^{i_ym_z}u_m^l\tau ^l,\quad l=0,1,2,3, \end{aligned}$$
(149)

where \(u_m^i\), \(i=1,2,3\) is real and \(u_m^0\) is pure imaginary. \({\mathcal {T}}\) and I further give constraints

$$\begin{aligned} \eta _t^{m_z}g_Tu_m^l\tau ^lg_T^{-1}= & {} -u_m^l\tau ^l; \end{aligned}$$
(150)
$$\begin{aligned} \eta _I^{m_z}g_Iu_m^l\tau ^lg_I^{-1}= & {} u_{I(m)}^l\tau ^l. \end{aligned}$$
(151)

Using \(u_{I(m)}=u_{-m}=u_m^{\dagger }\), we can conclude that when

$$\begin{aligned} \eta _t= & {} 1,\eta _I=1,g_T=i\tau ^3,\text { and }g_I=i\tau ^3, \end{aligned}$$
(152)

all \(u_m\) vanish. This kills \(10\times 2^3\times 4=320\) PSGs and the totally number of PSGs is \(5184-320=4864\). When

$$\begin{aligned} \eta _t\eta _I=-1,g_T=i\tau ^3,g_I=i\tau ^{1,2}\text { or }\tau ^0, \end{aligned}$$
(153)

all \(u_m^l\) vanish for odd \(m_z\), namely only \(u_{i,i+x}\) and \(u_{i,i+y}\) remain non-zero. These ansatzes degenerate to describe spin liquids in a rectangular lattice in 2D plane, which is irrelevant to us. There is another similar case. When \(G_x=(-)^{i_z}\tau ^0\), \(G_{P_x}\) will give the constraint

$$\begin{aligned}&\left( \cos \left( \frac{\pi }{2}m_z\right) +(-)^{i_z}\sin \left( \frac{\pi }{2}m_z\right) \right) \cdot \nonumber \\&\quad \eta _p^{m_y}g_{P_x}u_m^l\tau ^lg_{P_x}^{-1}=u_{P_x(m)}^l\tau ^l. \end{aligned}$$
(154)

For odd \(m_z\), l.h.s. is a function of \(i_z\) while r.h.s. is not, which indicates that all the \(u_m^l\) for odd \(m_z\) must vanish to satisfy the equation. As indicated in the previous argument, we do not take consideration of these ansatzes. Therefore, only \(G_x(i)=G_y(i)=\tau ^0\) case will be under consideration. The number of PSGs left is \((4864-(9+14)\times 2^3\times 4)\div 4=1032\).

When \(G_x(i)=G_y(i)=\tau ^0\), \(P_x\) and \(P_y\) give constraints on ansatzes

$$\begin{aligned} g_{P_x}u_x^l\tau ^lg_{P_x}^{-1}= & {} u_x^{l\dagger }\tau ^l; \end{aligned}$$
(155)
$$\begin{aligned} \eta _pg_{P_x}u_y^l\tau ^lg_{P_x}^{-1}= & {} u_y^l\tau ^l; \end{aligned}$$
(156)
$$\begin{aligned} \eta _{5px}g_{P_x}u_z^l\tau ^lg_{P_x}^{-1}= & {} u_{-x+z}^l\tau ^l; \end{aligned}$$
(157)
$$\begin{aligned} \eta _p\eta _{5px}g_{P_x}u_{-y+z}^l\tau ^lg_{P_x}^{-1}= & {} u_{-x-y+z}^l\tau ^l; \end{aligned}$$
(158)
$$\begin{aligned} \eta _pg_{P_y}u_x^l\tau ^lg_{P_y}^{-1}= & {} u_x^l\tau ^l; \end{aligned}$$
(159)
$$\begin{aligned} g_{P_y}u_y^l\tau ^lg_{P_y}^{-1}= & {} u_y^{l\dagger }\tau ^l; \end{aligned}$$
(160)
$$\begin{aligned} \eta _{5py}g_{P_y}u_z^l\tau ^lg_{P_y}^{-1}= & {} u_{-y+z}^l\tau ^l; \end{aligned}$$
(161)
$$\begin{aligned} \eta _p\eta _{5py}g_{P_y}u_{-x+z}^l\tau ^lg_{P_y}^{-1}= & {} u_{-x-y+z}^l\tau ^l. \end{aligned}$$
(162)

These equations determine the constraints of ansatzes in numerical calculation. Two of the constraints are employed. One is the periodic condition, that the periodicity of all the ansatzes is 1, and the other is the sector condition, that the ansatzes satisfy

$$\begin{aligned} u_z=s_x u_{-x+z}=s_y u_{-y+z}=s_{xy} u_{-x-y+z}, \end{aligned}$$
(163)

with \(s_x,s_y,s_{xy}=\pm 1\). According to numerical results, there are at most 311 inequivalent ansatzes.

Numerical method and data for strong coupling case

Differential evolution (DE), originally developed by Storn and Price [42], is a meta-heuristic algorithm that globally optimizes a given objective function in an iterative manner. Usually, the objective function is treated as a black box and no assumptions are needed. For example, unlike traditional gradient descent, conjugate gradient and quasi-Newton methods, derivatives are not needed. Evaluation of derivatives of mean-field energy defined previously is time-consuming for which DE is suitable. Besides, another algorithm, the Nelder-Mead method is also tested but doesn’t perform as well as DE.

DE works with a group (called population) of solution candidates (called agents), which is initialized randomly. In each iterative step, a certain agent is selected and a new agent is generated from this agent and two other randomly selected agents in a random, linear way. If the new agent is better that the old agent, the old agent is replaced by the new one. If not, the trial agent is simply discarded. This procedure continues until some certain accuracy is reached.

In this paper, DE is used to optimize the mean-field energy with respect to ansatzes. Constrained by PSG’s, the number of optimizing variables is restricted to be 12. The number of agents is set to be 120, 10 times the number of variables, with differential weight being 0.9 and cross-over probability being 0.5.

1.1 Fourier transformation of the mean-field Hamiltonian

The mean-field Hamiltonian reads

$$\begin{aligned} H_{{\text {MF}}}=H_{{\text {MF}}}^f-H_{{\text {MF}}}^b \end{aligned}$$
(164)

with

$$\begin{aligned} H_{{\text {MF}}}^f= & {} \frac{3}{4} \sum _{\mathbf {r}} \sum _\alpha J_\alpha [ \psi _{\alpha _1}^\dagger (\mathbf {r})U_\alpha \psi _{\alpha _2}(\mathbf {r}) \nonumber \\&+\psi _{\alpha _2}^\dagger (\mathbf {r})U_\alpha ^\dagger \psi _{\alpha _1}(\mathbf {r}) ] \end{aligned}$$
(165)

and

$$\begin{aligned} H_{{\text {MF}}}^b= & {} \sum _{\mathbf {r}} \sum _\alpha t_\alpha [ b_{\alpha _1}^\dagger (\mathbf {r})U_\alpha b_{\alpha _2}(\mathbf {r})\nonumber \\&+b_{\alpha _2}^\dagger (\mathbf {r})U_\alpha ^\dagger b_{\alpha _1}(\mathbf {r})] \end{aligned}$$
(166)

Here superscripts f and b mean fermion and boson respectively. \(\mathbf {r}\) refers to the coordinate of one certain super-cell. \(\alpha \) refers to the index of one certain bond in a cell. \(\alpha _1\) is the index of the first end of bond \(\alpha \), \(\alpha _2\) is the other end. They are assigned for each bond \(\alpha \) before practical calculation. Order of these two sites, \(\alpha _1\) and \(\alpha _2\), matters, which means they are not symmetric in formulas. \(U_\alpha \) is defined to be \(u_{\alpha _1,\alpha _2}\), so it becomes a bond-dependent quantity. Note that \(u_{\alpha _1,\alpha _2}\) not necessarily equals to \(u_{\alpha _2,\alpha _1}\). In this holon-condensed case, bosons are treated as scalars.

Only derivation of Fourier-transformed form for the fermion Hamiltonian is shown in detail. The Fourier-transformed form of the boson Hamiltonian can be obtained by just replacing \(\psi \) with b since commutation relations are not included in derivation.

Take substitutions

$$\begin{aligned} \psi _{\alpha _1}(\mathbf {r})=\frac{1}{\sqrt{N_\text {cell}}}\sum _{\mathbf {k}}{\psi _{\alpha _1}(\mathbf {k})}e^{\mathbbm {i}\mathbf {k}\cdot (\mathbf {r}+\mathbf {l}_{\alpha _1})} \end{aligned}$$
(167)

and

$$\begin{aligned} \psi _{\alpha _2}(\mathbf {r})=\frac{1}{\sqrt{N_\text {cell}}}\sum _{\mathbf {k}}{\psi _{\alpha _2}(\mathbf {k})}e^{\mathbbm {i}\mathbf {k}\cdot (\mathbf {r}+\mathbf {l}_{\alpha _2})}, \end{aligned}$$
(168)

we further have

$$\begin{aligned} H_{{\text {MF}}}^f= & {} \frac{3}{4} \sum _{\mathbf {k}}\sum _{\alpha } J_\alpha [ \psi _{\alpha _1}^\dagger (\mathbf {k})U_\alpha e^{\mathbbm {i}\mathbf {k}\cdot (\mathbf {l}_{\alpha _2}-\mathbf {l}_{\alpha _1})} \psi _{\alpha _2}(\mathbf {k}) \nonumber \\&+\psi _{\alpha _2}^\dagger (\mathbf {k})U_\alpha ^\dagger e^{-\mathbbm {i}\mathbf {k}\cdot (\mathbf {l}_{\alpha _2}-\mathbf {l}_{\alpha _1})} \psi _{\alpha _1}(\mathbf {k}) ]. \end{aligned}$$
(169)

It should be noted that this Hamiltonian is block-diagonalized with respect to \(\mathbf {k}\). So we can calculate eigenvalues and eigenvectors of each block-matrix individually to reduce calculation workload.

$$\begin{aligned} {\mathcal {H}}_{{\text {MF}}}^b= & {} \sum _{\mathbf {k}}\sum _{\alpha } t_\alpha [ b_{\alpha _1}^\dagger (\mathbf {k})U_\alpha e^{\mathbbm {i}\mathbf {k}\cdot (\mathbf {l}_{\alpha _2}-\mathbf {l}_{\alpha _1})} b_{\alpha _2}(\mathbf {k}) \nonumber \\&+b_{\alpha _2}^\dagger (\mathbf {k})U_\alpha ^\dagger e^{-\mathbbm {i}\mathbf {k}\cdot (\mathbf {l}_{\alpha _2}-\mathbf {l}_{\alpha _1})} b_{\alpha _1}(\mathbf {k}) ]. \end{aligned}$$
(170)

These two equations can be rephrased in matrix form:

$$\begin{aligned} H_{{\text {MF}}}^f=\sum _{\mathbf {k}}{\psi ^\dagger (\mathbf {k}) Q_{{\text {MF}}}^f(\mathbf {k}) \psi (\mathbf {k})} \end{aligned}$$
(171)

with

$$\begin{aligned} \psi ({\mathbf {k}})= \begin{pmatrix} \psi _{1,\uparrow }(\mathbf {k})\\ \psi _{2,\uparrow }(\mathbf {k})\\ \vdots \\ \psi _{N_\text {site},\uparrow }(\mathbf {k})\\ \psi _{1,\downarrow }(\mathbf {k}) \\ \vdots \\ \psi _{N_\text {site},\downarrow }(\mathbf {k}) \end{pmatrix}. \end{aligned}$$
(172)

Here \(N_\text {site}\) means the number of sites in one unit cell. And the number of cells is inidicated by \(N_\text {cell}\).

The \(Q_{{\text {MF}}}^f\) can be diagonalized as

$$\begin{aligned} Q_{{\text {MF}}}^f(\mathbf {k})=S^f(\mathbf {k})D^f(\mathbf {k})S^{f \dagger }(\mathbf {k}). \end{aligned}$$
(173)

Denote \(\phi (\mathbf {k})=S^{f \dagger }(\mathbf {k}) \psi (\mathbf {k})\), we further have

$$\begin{aligned} H_{{\text {MF}}}^f=\sum _{\mathbf {k}}\sum _{i=1}^{2N_\text {site}}{\lambda _i^f(\mathbf {k})\phi _i^\dagger (\mathbf {k})\phi _i(\mathbf {k})}. \end{aligned}$$
(174)

To obtain energy of the original Hamiltonian, we need to evaluate the average \(\langle \psi _i^\dagger (\mathbf {k_1})\psi _j(\mathbf {k_2}) \rangle _0\). The subscript 0 means that average is taken in a Gaussian level. These two averages can be expressed as

$$\begin{aligned} \langle \psi _i^\dagger (\mathbf {k_1})\psi _j(\mathbf {k_2}) \rangle _0= \delta _{\mathbf {k_1},\mathbf {k_2}} \sum _{l=1}^{2N_\text {site}}{S_{il}^{f*}S_{jl}^f \langle \phi _l^\dagger (\mathbf {k_1})\phi _l(\mathbf {k_1}) \rangle _0 },\nonumber \\ \end{aligned}$$
(175)

where

$$\begin{aligned} \langle \phi _l^\dagger (\mathbf {k})\phi _l(\mathbf {k}) \rangle _0= {\left\{ \begin{array}{ll} 0, &{}\lambda _l^f(\mathbf {k})>0 \\ 1, &{}\lambda _l^f(\mathbf {k})<0. \end{array}\right. } \end{aligned}$$
(176)

For simplicity, we define several functions:

$$\begin{aligned} n_f(i,s)= & {} \sum _{\mathbf {k}}\langle \psi _{i,s}^\dagger (\mathbf {k}) \psi _{i,s}(\mathbf {k}) \rangle _0, \end{aligned}$$
(177)
$$\begin{aligned} n_b(i,s)= & {} \sum _{\mathbf {k}} \langle b_{i,s}^\dagger (\mathbf {k}) b_{i,s}(\mathbf {k}) \rangle _0, \end{aligned}$$
(178)
$$\begin{aligned} O_f(\alpha ,s_1,s_2)= & {} \sum _{\mathbf {k}}e^{\mathbbm {i}\mathbf {k} \cdot (\mathbf {l}_{\alpha _2}-\mathbf {l}_{\alpha _1})} \langle \psi _{\alpha _1,s_1}^\dagger (\mathbf {k}) \psi _{\alpha _2,s_2}(\mathbf {k}) \rangle _0, \nonumber \\ \end{aligned}$$
(179)
$$\begin{aligned} O_b(\alpha ,s_1,s_2)= & {} \sum _{\mathbf {k}}e^{\mathbbm {i}\mathbf {k} \cdot (\mathbf {l}_{\alpha _2}-\mathbf {l}_{\alpha _1})} \langle b_{\alpha _1,s_1}^\dagger (\mathbf {k}) b_{\alpha _2,s_2}(\mathbf {k}) \rangle _0.\nonumber \\ \end{aligned}$$
(180)

Here i is the site index in one super-cell, s, \(s_1\) and \(s_2\) can be \(\uparrow \) or \(\downarrow \).

1.2 Evaluation of the energy

With the assistance with definitions above, the energy of the original mean-field Hamiltonian (Eq. 164) can be expressed as

$$\begin{aligned} \langle H_{\text {MF}} \rangle _0= & {} \langle H_{\text {MF}}^f \rangle _0-\langle H_{\text {MF}}^b \rangle _0, \end{aligned}$$
(181)
$$\begin{aligned} \langle H_{{\text {MF}}}^f \rangle _0= & {} \sum _{\alpha }\frac{3J_\alpha }{4}\left[ \frac{N_\text {cell}}{4}-\frac{1}{4}n_f(\alpha _1,\uparrow )-\frac{1}{4}n_f(\alpha _1,\downarrow ) \right. \nonumber \\&-\frac{1}{4}n_f(\alpha _2,\downarrow )-\frac{1}{4}n_f(\alpha _2,\downarrow ) \nonumber \\&-\frac{1}{2N_\text {cell}}O_f(\alpha ,\downarrow ,\uparrow )O_f(\alpha ,\uparrow ,\downarrow ) \nonumber \\&+\frac{1}{2N_\text {cell}}O_f(\alpha ,\uparrow ,\uparrow )O_f(\alpha ,\downarrow ,\downarrow ) \nonumber \\&-\frac{1}{2N_\text {cell}}O_f^*(\alpha ,\downarrow ,\uparrow )O_f^*(\alpha ,\uparrow ,\downarrow ) \nonumber \\&+\frac{1}{2N_\text {cell}}O_f^*(\alpha ,\uparrow ,\uparrow )O_f^*(\alpha ,\downarrow ,\downarrow ) \nonumber \\&-\frac{1}{4N_\text {cell}}O_f^*(\alpha ,\uparrow ,\uparrow )O_f(\alpha ,\uparrow ,\uparrow ) \nonumber \\&+\frac{1}{4N_\text {cell}}n_f(\alpha _1,\uparrow )n_f(\alpha _2,\uparrow ) \nonumber \\&-\frac{1}{4N_\text {cell}}O_f^*(\alpha ,\uparrow ,\downarrow )O_f(\alpha ,\uparrow ,\downarrow ) \nonumber \\&+\frac{1}{4N_\text {cell}}n_f(\alpha _1,\uparrow )n_f(\alpha _2,\downarrow ) \nonumber \\&-\frac{1}{4N_\text {cell}}O_f^*(\alpha ,\downarrow ,\uparrow )O_f(\alpha ,\downarrow ,\uparrow ) \nonumber \\&+\frac{1}{4N_\text {cell}}n_f(\alpha _1,\downarrow )n_f(\alpha _2,\uparrow ) \nonumber \\&-\frac{1}{4N_\text {cell}}O_f^*(\alpha ,\downarrow ,\downarrow )O_f(\alpha ,\downarrow ,\downarrow ) \nonumber \\&\left. +\frac{1}{4N_\text {cell}}n_f(\alpha _1,\downarrow )n_f(\alpha _2,\downarrow ) \right] , \end{aligned}$$
(182)

and

$$\begin{aligned} \langle H_{{\text {MF}}}^b \rangle _0= & {} \frac{1}{2N_\text {cell}}\sum _{\alpha } t_\alpha [ O_b(\alpha ,\uparrow ,\downarrow )O_f(\alpha ,\downarrow ,\uparrow ) \nonumber \\&+O_b(\alpha ,\downarrow ,\uparrow )O_f(\alpha ,\uparrow ,\downarrow ) \nonumber \\&-O_b(\alpha ,\uparrow ,\uparrow )O_f(\alpha ,\downarrow ,\downarrow ) \nonumber \\&-O_b(\alpha ,\downarrow ,\downarrow )O_f(\alpha ,\uparrow ,\uparrow ) \nonumber \\&+O_b^*(\alpha ,\uparrow ,\downarrow )O_f^*(\alpha ,\downarrow ,\uparrow ) \nonumber \\&+O_b^*(\alpha ,\downarrow ,\uparrow )O_f^*(\alpha ,\uparrow ,\downarrow ) \nonumber \\&-O_b^*(\alpha ,\uparrow ,\uparrow )O_f^*(\alpha ,\downarrow ,\downarrow ) \nonumber \\&-O_b^*(\alpha ,\downarrow ,\downarrow )O_f^*(\alpha ,\uparrow ,\uparrow ) \nonumber \\&+O_b(\alpha ,\uparrow ,\uparrow )O_f^*(\alpha ,\uparrow ,\uparrow ) \nonumber \\&+O_b(\alpha ,\uparrow ,\downarrow )O_f^*(\alpha ,\uparrow ,\downarrow ) \nonumber \\&+O_b(\alpha ,\downarrow ,\uparrow )O_f^*(\alpha ,\downarrow ,\uparrow ) \nonumber \\&+O_b(\alpha ,\downarrow ,\downarrow )O_f^*(\alpha ,\downarrow ,\downarrow ) \nonumber \\&+O_b^*(\alpha ,\uparrow ,\uparrow )O_f(\alpha ,\uparrow ,\uparrow ) \nonumber \\&+O_b^*(\alpha ,\uparrow ,\downarrow )O_f(\alpha ,\uparrow ,\downarrow ) \nonumber \\&+O_b^*(\alpha ,\downarrow ,\uparrow )O_f(\alpha ,\downarrow ,\uparrow ) \nonumber \\&+O_b^*(\alpha ,\downarrow ,\downarrow )O_f(\alpha ,\downarrow ,\downarrow ) ]. \end{aligned}$$
(183)

Construction of the interaction hamiltonian in weak coupling limit

A generic interaction term reads (spin indices neglected) [27]

$$\begin{aligned} H'= & {} \int \prod _a\frac{k_a}{2\pi }\sum _{P_a,i_a}\delta (Q)V({P_a,i_a,k_a})\nonumber \\&\psi _{i_1}^{P_1\dag }(k_1)\psi _{i_2}^{P_2\dag }(k_2)\psi _{i_3}^{P_3}(k_3)\psi _{i_4}^{P_4}(k_4), \end{aligned}$$
(184)

where \(P=1(-1)\) for R(L). The constraint of momentum conservation

$$\begin{aligned} 0=Q=- & {} P_1k_{Fi_1}-P_2k_{Fi_2}+P_3k_{Fi_3}+P_4k_{Fi_4}\nonumber \\&-k_1-k_2+k_3+k_4. \end{aligned}$$
(185)

As the momentum of chiral fermions (\(k_i\)) are much smaller than Fermi vectors (\(k_{Fi}\)), the momentum conservation is reduced to

$$\begin{aligned} -P_1k_{Fi_1}-P_2k_{Fi_2}+P_3k_{Fi_3}+P_4k_{Fi_4}=0. \end{aligned}$$
(186)

Therefore, only two types of interactions are allowed. The first one is intra-band scattering \(\psi _{i}^{R\dag }\psi _{j}^{L\dag }\psi _{j}^{L}\psi _{i}^{R}\) and the second one is inter-band scattering \(\psi _{i}^{R\dag }\psi _{i}^{L\dag }\psi _{3-i}^{L}\psi _{3-i}^{R}\). The purely chiral terms like \(\psi _{i}^{R\dag }\psi _{j}^{R\dag }\psi _{j}^{R}\psi _{i}^{R}\) do not generate renormalization at leading order [27] and thus are neglected. When spin is included, we define charge and spin current

$$\begin{aligned} T_{ij}= & {} \sum _{s}\psi _{i,s}^{\dag }\psi _{i,s}, \end{aligned}$$
(187)
$$\begin{aligned} \mathbf {T}_{ij}= & {} \frac{1}{2}\sum _{s,s'}\psi _{i,s}^{\dag }\mathbf {\sigma }_{ss'}\psi _{i,s'}, \end{aligned}$$
(188)

and the interaction Hamiltonian density in real space can be written as

$$\begin{aligned} \mathcal {H'}= & {} f_{ij}^{\rho }T_{ii}^R T_{jj}^L-f_{ij}^{\sigma }\mathbf {T}_{ii}^R\cdot \mathbf {T}_{jj}^L\nonumber \\&+{f'}_{ii}^{\rho }T_{i,3-i}^RT_{i,3-i}^L-{f'}_{i,i}^{\sigma }\mathbf {T}_{i,3-i}^R\cdot \mathbf {T}_{ij}^L. \end{aligned}$$
(189)

Derivation of RG equations

Define \(z_i=v_i\tau -ix\), where \(v_i\) is the Fermi velocity. Determined by the operator product expansion (OPE) in terms of chiral fermions

$$\begin{aligned} \psi _{i,s}^R(x,\tau )\psi _{j,s'}^{R\dag }(0,0)\sim \frac{\delta _{ij}\delta {ss'}}{2\pi z_i}, \end{aligned}$$
(190)
$$\begin{aligned} \psi _{i,s}^L(x,\tau )\psi _{j,s'}^{L\dag }(0,0)\sim \frac{\delta _{ij}\delta {ss'}}{2\pi z_i^*}, \end{aligned}$$
(191)

the current algebra reads [27]

$$\begin{aligned} T_{ij}^R(x,\tau )T_{lm}^R(0,0)\sim & {} \frac{\delta _{il}}{2\pi z_j}T_{jm}^R-\frac{\delta _{jm}}{2\pi z_i}T_{il}^R, \end{aligned}$$
(192)
$$\begin{aligned} T_{ij}^{Ra}(x,\tau )T_{lm}^{Rb}(0,0)\sim & {} \frac{\delta _{ab}}{4}\left( \frac{\delta _{il}}{2\pi z_j}T_{jm}^R-\frac{\delta _{jm}}{2\pi z_i}T_{il}^R\right) \end{aligned}$$
(193)
$$\begin{aligned}&+\frac{i\epsilon _{abc}}{2}\left( \frac{\delta _{il}}{2\pi z_j}T_{jm}^{Rc}+\frac{\delta _{jm}}{2\pi z_i}T_{il}^{Rc}\right) ,\nonumber \\ T_{ij}^{Ra}(x,\tau )T_{lm}^R(0,0)\sim & {} \frac{\delta _{il}}{2\pi z_j}T_{jm}^{Ra}-\frac{\delta _{jm}}{2\pi z_i}T_{il}^{Ra}, \end{aligned}$$
(194)

where \(T^{Ra}\) is the components of the vector current \(\mathbf {T}^R\). For \(T^L\), the current algebra is the same, except \(z_i\rightarrow z_i^*\). Employing the standard method [39] and using the current algebra above, we obtain the RG equations

$$\begin{aligned} {\dot{f}}_{ii}^{\rho }= & {} -\frac{16({f'}_{ii}^{\rho })^2+3({f'}_{ii}^{\sigma })^2}{32\pi v_i}, \end{aligned}$$
(195)
$$\begin{aligned} {\dot{f}}_{ii}^{\sigma }= & {} -\frac{2(f_{ii}^{\sigma })^2+4{f'}_{ii}^{\rho }{f'}_{ii}^{\sigma }+({f'}_{ii}^{\sigma })^2}{4\pi v_i}, \end{aligned}$$
(196)
$$\begin{aligned} {\dot{f}}_{i,3-i}^{\rho }= & {} \frac{16({f'}_{ii}^{\rho })^2+3({f'}_{ii}^{\sigma })^2}{16\pi (v_i+v_{3-i})}, \end{aligned}$$
(197)
$$\begin{aligned} {\dot{f}}_{i,3-i}^{\sigma }= & {} \frac{2(f_{i,3-i}^{\sigma })^2+4{f'}_{ii}^{\rho }{f'}_{ii}^{\sigma }-({f'}_{ii}^{\sigma })^2}{2\pi (v_i+v_{3-i})}, \end{aligned}$$
(198)
$$\begin{aligned} \dot{f'}_{ii}^{\rho }= & {} \frac{16f_{ij}^{\rho }{f'}_{ii}^{\rho }+3f_{ij}^{\sigma }{f'}_{ii}^{\sigma }}{8\pi (v_i+v_{3-i})}\nonumber \\&-\sum _i \frac{16f_{ii}^{\rho }{f'}_{ii}^{\rho }+3f_{ii}^{\sigma }{f'}_{ii}^{\sigma }}{32\pi v_i}, \end{aligned}$$
(199)
$$\begin{aligned} \dot{f'}_{ii}^{\sigma }= & {} \frac{2f_{ij}^{\rho }{f'}_{ii}^{\sigma }+2f_{ij}^{\sigma }{f'}_{ii}^{\rho }-f_{ij}^{\sigma }{f'}_{ii}^{\sigma }}{\pi (v_i+v_{3-i})}\nonumber \\&-\sum _i\frac{2f_{ii}^{\rho }{f'}_{ii}^{\sigma }+2f_{ii}^{\sigma }{f'}_{ii}^{\rho }+f_{ii}^{\sigma }{f'}_{ii}^{\sigma }}{4\pi v_i}. \end{aligned}$$
(200)

Symmetries of the coupling constants are employed in the derivation of the equations above. The initial value of these coupling constants are

$$\begin{aligned} f_{ij,0}^{\rho }= & {} \frac{1}{4} f_{ij,0}^{\sigma }=J'\left( 1-(-1)^{i+j}\cos \left( \frac{k_{Fi}+k_{Fj}}{2}\right) \right) \nonumber \\&+\frac{1}{2}J(1-\cos (k_{Fi}+k_{Fj}))+\delta _{ij}J_y, \end{aligned}$$
(201)
$$\begin{aligned} {f'}_{ii,0}^{\rho }= & {} \frac{1}{4} {f'}_{ii,0}^{\sigma }=J\sin (k_{F1})\sin (k_{F2})\nonumber \\&-2J'\sin \left( \frac{k_{F1}}{2}\right) \sin \left( \frac{k_{F2}}{2}\right) -J_y. \end{aligned}$$
(202)

The RG flows are calculated numerically.

Bosonization dictionary [39]

The bosonization dictionary [39] reads

$$\begin{aligned} \psi _{i,s}^{R/L}\sim \eta _{i,s}e^{i\sqrt{4\pi }\phi ^{R/L}_{i,s}}, \end{aligned}$$
(203)

where the chiral boson fields satisfy commutation relation [27]

$$\begin{aligned}{}[\phi ^{R}_{i,s}(x),\phi ^{R}_{i',s'}(y)]= & {} -[\phi ^{L}_{i,s}(x),\phi ^{L}_{i',s'}(y)]\nonumber \\= & {} \frac{i}{4}\text {sgn}(x-y)\delta _{ii'}\delta _{ss'}, \end{aligned}$$
(204)
$$\begin{aligned}= & {} \frac{i}{4}\delta _{ii'}\delta _{ss'}, \end{aligned}$$
(205)

and \(\eta \)s are Klein factors satisfying \(\{\eta _{i,s},\eta _{i',s'}\}=2\delta _{ii'}\delta _{ss'}\). To describe spin and charge modes, we further define

$$\begin{aligned} \phi _{i,\rho }= & {} \frac{1}{\sqrt{2}}(\phi ^R_{i,\uparrow }+\phi ^R_{i,\downarrow }+\phi ^L_{i,\uparrow }+\phi ^L_{i,\downarrow }), \end{aligned}$$
(206)
$$\begin{aligned} \theta _{i,\rho }= & {} \frac{1}{\sqrt{2}}(\phi ^R_{i,\uparrow }+\phi ^R_{i,\downarrow }-\phi ^L_{i,\uparrow }-\phi ^L_{i,\downarrow }), \end{aligned}$$
(207)
$$\begin{aligned} \phi _{i,\sigma }= & {} \frac{1}{\sqrt{2}}(\phi ^R_{i,\uparrow }-\phi ^R_{i,\downarrow }+\phi ^L_{i,\uparrow }-\phi ^L_{i,\downarrow }), \end{aligned}$$
(208)
$$\begin{aligned} \theta _{i,\sigma }= & {} \frac{1}{\sqrt{2}}(\phi ^R_{i,\uparrow }-\phi ^R_{i,\downarrow }-\phi ^L_{i,\uparrow }+\phi ^L_{i,\downarrow }), \end{aligned}$$
(209)

where subscript \(\rho \) represents charge mode and \(\sigma \) represents spin mode, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, ZQ., Sun, KW. & Wang, F. Nodeless superconductivity in cuprates with Ba\(_2\)CuO\(_3\)-type structure. Eur. Phys. J. B 94, 233 (2021). https://doi.org/10.1140/epjb/s10051-021-00244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00244-2

Navigation