Skip to main content
Log in

Relations between anomalous diffusion and fluctuation scaling: the case of ultraslow diffusion and time-scale-independent fluctuation scaling in language

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Fluctuation scaling (FS) and anomalous diffusion have been discussed in different contexts, even though both are often observed in complex systems. To clarify the relationship between these concepts, we investigated approximately three billion Japanese blog articles over a period of six years and analyzed the corresponding Poisson process driven by a random walk model with power-law forgetting, which reproduces both the anomalous diffusion and the FS. From the analysis of the model, we have identified the relationship between the time-scale dependence of FS and characteristics of anomalous diffusion and showed that the time-scale-independent FS corresponds to essentially a logarithmic diffusion (i.e., a kind of ultraslow diffusion). In addition, we confirmed that this relationship is also valid for the actual data. This finding may contribute to the discovery of actual examples of ultraslow diffusion, which have been nearly unobserved in spite of many mathematical theories, because we can detect the time-scale-independent FS more easily and more distinctly than through direct detection of the logarithmic diffusion based on the mean squared displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used in this study was provided by Hotlink and cannot be made public. However, since the data is basically blog data, similar data can be obtained by web crawling. For easier access, we believe that Wikipedia Pageview data, which is public data, can also be used for verification.]

References

  1. R. Metzler, J. Klafter, Phys. Rep. 339(1), 1 (2000)

    Article  ADS  Google Scholar 

  2. M.A.A. da Silva, G.M. Viswanathan, J.C. Cressoni, Phys. Rev. E 89(5), 052110 (2014)

    Article  ADS  Google Scholar 

  3. J.P. Bouchaud, A. Georges, Phys. Rep. 195(4–5), 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Burov, J.H. Jeon, R. Metzler, E. Barkai, Phys. Chem. Chem. Phys. 13(5), 1800 (2011)

    Article  Google Scholar 

  5. S.B. Lowen, M.C. Teich, Fractal-Based Point Processes, vol. 366 (Wiley, 2005)

  6. Y.G. Sinai, Theory Probab. Appl. 27(2), 256 (1983)

    Article  Google Scholar 

  7. A. Godec, A.V. Chechkin, E. Barkai, H. Kantz, R. Metzler, J. Phys. A Math. Theor. 47(49), 492002 (2014)

    Article  Google Scholar 

  8. L.P. Sanders, M.A. Lomholt, L. Lizana, K. Fogelmark, R. Metzler, T. Ambjörnsson, New J. Phys. 16(11), 113050 (2014)

    Article  ADS  Google Scholar 

  9. A.S. Bodrova, A.V. Chechkin, A.G. Cherstvy, R. Metzler, New J. Phys. 17(6), 063038 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. A.G. Cherstvy, R. Metzler, Phys. Chem. Chem. Phys. 15(46), 20220 (2013)

    Article  Google Scholar 

  11. T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Math. Model. Nat. Phenom. 11(3), 18 (2016)

    Article  MathSciNet  Google Scholar 

  12. C.H. Eab, S.C. Lim, Phys. Rev. E 83(3), 031136 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Liang, S. Wang, W. Chen, Z. Zhou, R.L. Magin, Appl. Mech. Rev. 71(4), 040802 (2019). https://asmedigitalcollection.asme.org/appliedmechanicsreviews/articleabstract/71/4/040802/955451/A-Survey-of-Models-of-Ultraslow-Diffusion-in

  14. Y. Liang, W. Chen, Commun. Nonlinear Sci. Numer. Simul. 56, 131 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Watanabe, Phys. Rev. E 98(1), 012308 (2018)

    Article  ADS  Google Scholar 

  16. C. Song, T. Koren, P. Wang, A.L. Barabási, Nat. Phys. 6(10), 818 (2010)

    Article  Google Scholar 

  17. D. Boyer, M.C. Crofoot, P.D. Walsh, J. R. Soc. Interface 9(70) (2011). https://royalsocietypublishing.org/doi/full/10.1098/rsif.2011.0582

  18. K. Matan, R.B. Williams, T.A. Witten, S.R. Nagel, Phys. Rev. Lett. 88(7), 076101 (2002)

    Article  ADS  Google Scholar 

  19. P. Richard, M. Nicodemi, R. Delannay, P. Ribiere, D. Bideau, Nat. Mater. 4(2), 121 (2005)

    Article  ADS  Google Scholar 

  20. L.R. Taylor, Nature 189, 732 (1961)

    Article  ADS  Google Scholar 

  21. S. Meloni, J. Gómez-Gardeñes, V. Latora, Y. Moreno, Phys. Rev. Lett. 100, 208701 (2008). https://doi.org/10.1103/PhysRevLett.100.208701

    Article  ADS  Google Scholar 

  22. M. Argollo de Menezes, A.L. Barabási, Phys. Rev. Lett. 93, 068701 (2004). https://doi.org/10.1103/PhysRevLett.93.068701

    Article  ADS  Google Scholar 

  23. M. Xu. arXiv:1505.02033 (2015)

  24. Z. Eisler, I. Bartos, J. Kertesz, Adv. Phys. 57(1), 89 (2008)

    Article  ADS  Google Scholar 

  25. A.H. Sato, M. Nishimura, J.A. Hołyst, Phys. A 389(14), 2793 (2010)

    Article  Google Scholar 

  26. J. Onnela, F. Reed-Tsochas, Proc. Natl. Acad. Sci. USA 107(43), 18375 (2010)

    Article  ADS  Google Scholar 

  27. M. Gerlach, E.G. Altmann, New J. Phys. 16(11), 113010 (2014)

    Article  ADS  Google Scholar 

  28. Q.S. Hanley, S. Khatun, A. Yosef, R.M. Dyer, PLoS ONE 9(10), e109004 (2014). https://doi.org/10.1371/journal.pone.0109004

    Article  ADS  Google Scholar 

  29. Y. Sano, M. Takayasu, JEIC 5(2), 221 (2010)

    Google Scholar 

  30. H. Watanabe, Y. Sano, H. Takayasu, M. Takayasu, Phys. Rev. E 94(5), 052317 (2016)

    Article  ADS  Google Scholar 

  31. Y. Sano, K.K. Kaski, M. Takayasu, in Proc. Complex ’09, vol. 5 (Springer, Berlin, 2009), pp. 195–198

  32. Y. Sano, K. Yamada, H. Watanabe, H. Takayasu, M. Takayasu, Phys. Rev. E 87, 012805 (2013). https://doi.org/10.1103/PhysRevE.87.012805

    Article  ADS  Google Scholar 

  33. E.G. Altmann, M. Gerlach. Physicists’ papers on natural language from a complex systems viewpoint. http://www.pks.mpg.de/mpi-doc/sodyn/physicist-language/

  34. D.M. Abrams, S.H. Strogatz, Nature 424(6951), 900 (2003)

    Article  ADS  Google Scholar 

  35. E.G. Altmann, M. Gerlach, arXiv:1502.03296 (2015)

  36. J. Cong, H. Liu, Phys. Life Rev. 11(4), 598 (2014)

    Article  ADS  Google Scholar 

  37. J. Gao, J. Hu, X. Mao, M. Perc, J. R. Soc. Interface 9(73), 1956 (2012)

    Article  Google Scholar 

  38. A.M. Petersen, J.N. Tenenbaum, S. Havlin, H.E. Stanley, M. Perc, Sci. Rep. 2(1), 1 (2012)

    Google Scholar 

  39. M. Magdziarz, A. Weron, Studia Math. 181(1), 47 (2007)

    Article  MathSciNet  Google Scholar 

  40. A.G. Cherstvy, D. Vinod, E. Aghion, I.M. Sokolov, R. Metzler, Phys. Rev. E 103(6), 062127 (2021)

    Article  ADS  Google Scholar 

  41. A.G. Cherstvy, D. Vinod, E. Aghion, A.V. Chechkin, R. Metzler, New J. Phys. 19(6), 063045 (2017)

    Article  ADS  Google Scholar 

  42. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55 (Courier Corporation, 1964)

  43. http://functions.wolfram.com/HypergeometricFunctions/

Download references

Acknowledgements

The authors would like to thank Hottolink, Inc., for providing the data. This work was supported by Leading Initiative for Excellent Young Researcher (LEADER) of the Ministry of Education, Culture, Sports, Science and Technology in Japan and JSPS KAKENHI Grant Numbers 17K13815 and 21K04529. We would like to thank Editage (http://www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

HW conceived the presented idea. HW performed the data analysis and theoretical calculation. HW discussed the results and contributed to the final manuscript.

Appendices

Appendix A: Estimation of b(L)

We use the following procedure to estimate b(L) given by Eq. (11) from the actual data:

  1. 1.

    We fix L.

  2. 2.

    We calculate \(E[F_j^{(L)}]\) and \(V[\delta F_j^{(L)}]\) for all words \((j=1,2,\ldots ,W)\).

  3. 3.

    We minimize \(Q^{(L)}\) with respect to b(L) under the condition \(b(L)>0\).

Here, \(Q^{(L)}\) is defined by

$$\begin{aligned}&Q^{(L)} \equiv s \cdot \left\{ \sum _{j \in \{j|Q_j^{(L)}>0,\; C_j \ge 100\}}\frac{{Q_j^{(L)}}^2}{N_p}\right\} \nonumber \\&\quad +(1-s) \cdot \left\{ \sum _{j \in \{j|Q_j^{(L)}<0,\; C_j \ge 100\}} \frac{{Q_j^{(L)}}^2}{N_m} \right\} , \end{aligned}$$
(A1)

where

$$\begin{aligned} Q_j^{(L)}=\log {(V[\delta F_j^{(L)}(\tau ^{L})]^{1/2})}-\log {((\frac{2}{L} \cdot C_j+b(L) \cdot C_j^2)^{1/2})} , \nonumber \\ \end{aligned}$$
(A2)

\(C_j=E[F_j^{(L)}]\), \(N_p=\sum _{j \in \{j|Q_j^{(L)}>0, C_j \ge 100\}} 1\), and \(N_m=\sum _{j \in \{j|Q_j^{(L)}<0,\; C_j \ge 100\}}1\). Note that the minimization of the first term of Eq. (A2) corresponds to a reduction of the data beneath the theoretical lower bound in Eq. (11). However, when we use only the first term, the estimation of b(L) is strongly affected by outliers. Therefore, we use the second term to accept the data beneath the theoretical curve, and s is the parameter used to control the ratio of acceptance. Here, we use \(s=0.9\) in our analysis. In addition, the reason why we only use \(\check{c}_j \ge 100\) is that we neglect words with a small \(c_j\), as these do not affect the estimation b(L) (see Eq. (11) and Fig. 2).

Appendix B: \(V[\delta F^{(L)}_j]\) for given \(\{r_j(t)\}\)

We calculate \(V[ \delta F_j^{(L)}]\) for given \(\{r_j(t)\}\). Using Eq. (30), we can decompose \(V[ \delta F_j^{(L)}]\) as

$$\begin{aligned}&V[ \delta F_j^{(L)} (\tau ^{(L)})]=\check{C_j}^2 V[\delta R_j^{(L)}]+ V[\delta W_j^{(L)}] \nonumber \\&\quad + 2 \cdot \check{C}_j E[ \delta R_j^{(L)} \delta W_j^{(L)}]. \end{aligned}$$
(B1)

First, we calculate the second term in Eq. (B1). The second term is written as \(V[\delta W_j^{(L)}]=E[\delta {W_j^{(L)}}^2]-E[\delta {W_j^{(L)}}]^2\), where \(E[\delta {W_j^{(L)}}^2]\) is given by

$$\begin{aligned} E[\delta {W_j^{(L)}}^2]=&\frac{1}{T^{(L)}-1} \sum ^{T^{(L)}-1}_{t^{(L)}=1} \{W_j^{(L)}(t^{(L)}+1) \nonumber \\&-W^{(L)}(t^{(L)})\}^2 \end{aligned}$$
(B2)
$$\begin{aligned} \approx&\frac{1}{L} \left\{ \sum ^{T}_{t=L+1}\frac{w_j(t)^2}{T-L} + \sum ^{T-L}_{t=1} \frac{w_j(t)^2}{T-L} \right\} , \nonumber \\ \end{aligned}$$
(B3)

where we use the assumption that \(T>>1\), \(<w_j(t)>=0\), and \(\{w_j(t)\}\) are independently distributed random variables. Approximating the sums in Eq. (B3) by Eq. (26) (using the assumption \(T>>1\) and \(L \le T/2\)), we write

$$\begin{aligned} E[\delta {W_j^{(L)}}^2] \approx \frac{2}{L}\{ E[1/m] \cdot \check{c}_j + {\check{\delta }_j}^2 (1+V[r_j]) \check{c}_j^2 \}. \end{aligned}$$
(B4)

In the calculation, we also use the approximations

$$\begin{aligned}&\sum ^{T}_{t=L+1} \frac{r_j(t)}{T-L} \approx 1, \end{aligned}$$
(B5)
$$\begin{aligned}&\sum ^{T-L}_{t=1} \frac{r_j(t)}{T-L} \approx 1, \end{aligned}$$
(B6)

and

$$\begin{aligned}&\frac{1}{2}\Bigg \{\sum ^{T}_{t=L+!}\frac{\{r_j(t)-\sum ^{T}_{t=L+1}\frac{r_j(t)}{T-L}\}^2}{T-L} \nonumber \\&\qquad + \sum ^{T-L}_{t=1}\frac{\{r_j(t)-\sum ^{T-L}_{t=1}\frac{r_j(t)}{T-L}\}^2}{T-L}\Bigg \} \nonumber \\&\quad \approx V[r_j]. \end{aligned}$$
(B7)

These approximations are based on the assumption that \(T>>L\) and \(\{r_j(t)\}\) do not have a particular trend.

Next, we calculate \(E[\delta {W_j^{(L)}}]^2\). Using Eq. (29), we can estimate \(E[\delta {W_j^{(L)}}]^2\) as follows:

$$\begin{aligned} E[\delta {W_j^{(L)}}]^2= & {} \left\{ \frac{W_j^{(L)}(T^{(L)})-W_j^{(L)}(1)}{T^{(L)}-1} \right\} ^2 \nonumber \\\approx & {} \left\{ \frac{O(1/\sqrt{L})}{T^{(L)}-1} \right\} ^2 \approx O(\frac{L}{(T-L)^2}) \end{aligned}$$
(B8)
$$\begin{aligned}\approx & {} {\left\{ \begin{array}{ll} O(1/T^2) &{}(L<<T), \\ O(1/T) &{} (L \approx T). \end{array}\right. } \end{aligned}$$
(B9)

Therefore, we can neglect this term for \(T>>1\).

Consequently, inserting Eqs. (B4) and (B9) into Eq. (B1), and using \(E[\delta C_j \delta W_j] \approx O(\sqrt{1/T}) \approx 0\) \((T>>1)\), we can obtain

$$\begin{aligned}&V[\delta F_j^{(L)}] \approx a(L) \check{C}_j +b(L) \check{C}_j^2 , \end{aligned}$$
(B10)

where

$$\begin{aligned} a(L)=\frac{2}{L} a_0 \end{aligned}$$
(B11)

and

$$\begin{aligned} b(L)= V[\delta R_j^{(L)}]+\frac{2b_0(1+V[r_j])}{L}. \end{aligned}$$
(B12)

Here, \(a_0=E[1/m]\) and \(b_0=\check{\delta }_j^2\).

Appendix C: \(V[\delta R^{(L)}_j]\) for a random walk

We calculate \(V[\delta R^{(L)}_j]\) for the following random walk with dissipation \(\kappa \ge 0\) and external force u(t):

$$\begin{aligned} r(t+1)=\kappa \cdot r(t)+u(t)+\eta (t), \end{aligned}$$
(C1)

where \(<\eta (t)>_{\eta }=0\), \(<(\eta (t)-<\eta (t)>_{\eta })^2>_{\eta }=\check{\eta }^2<<1\), \(u(t)>0\), and \(\kappa \ge 0\) and we omit the subscript j. Using Eq. (C1), R(I), defined by 28, is written as

$$\begin{aligned} R(I)= & {} \frac{1}{L} \sum ^{(LI-1)}_{t'=(I-1)L}\Bigg [\sum ^{t'-1}_{k=0} \kappa ^k u(1+t'-k) \nonumber \\&+ \kappa ^{t'} r(1) + \sum ^{t'-1}_{k=0}\kappa ^k \eta (1+t'-k)\Bigg ] \nonumber \\= & {} P_1(I)+P_2(I)+P_3(I). \end{aligned}$$
(C2)

Here, we define \(P_1(I)\), \(P_2(I)\), and \(P_3(I)\) as follows:

$$\begin{aligned}&P_1(I) \equiv \frac{1}{L} \sum ^{(LI-1)}_{t'=(I-1)L} \sum ^{t-1}_{k=0} \kappa ^k \cdot u(1+t'-k), \end{aligned}$$
(C3)
$$\begin{aligned}&P_2(I) \equiv \frac{1}{L} \sum ^{(LI-1)}_{t'=(I-1)L} \kappa ^{t'} \cdot r(1), \end{aligned}$$
(C4)
$$\begin{aligned}&P_3(I) \equiv \frac{1}{L} \sum ^{(LI-1)}_{t'=(I-1)L} \sum ^{t-1}_{k=0} \kappa ^k \cdot \eta (1+t'-k). \end{aligned}$$
(C5)

Because \(V[\delta R^{(L)}]\) can be decomposed as

$$\begin{aligned} V[\delta R^{(L)}_j] =V[\delta R]=E[\delta R^2]-E[\delta R]^2, \end{aligned}$$
(C6)

we calculate \(E[\delta R^2]\) and \(E[\delta R]^2\), respectively.

Calculation of \(E[\delta R^2]\). Here, we calculate the first term of Eq. (C6), \(E[\delta R^2]\). \(\delta R(I)^2\) is denoted by

$$\begin{aligned}&\delta R_j(I)^2 \nonumber \\&= (\delta P_1(I)+ \delta P_2(I)+ \delta P_3(I))^2 \nonumber \\&\approx \delta P_1(I)^2+ \delta P_2(I)^2+\delta P_3(I)^2+ 2 \cdot \delta P_1(I) \cdot \delta P_2(I). \nonumber \\ \end{aligned}$$
(C7)

We estimate the effects of the first term in Eq. (C7), \(\delta P_1(I)^2\). \(\delta P_1(I)\) can be written as

$$\begin{aligned} \delta P_1(I)=\frac{1}{L^2} \cdot \sum ^{L(I+1)}_{t=2}g_0(t,I) u(t), \end{aligned}$$
(C8)

where

$$\begin{aligned}&g_0(t,T) = \nonumber \\&{\left\{ \begin{array}{ll} \frac{ (\kappa ^L-1)^2 \cdot \kappa ^{-t+1} \cdot \kappa ^{(I-1)L} }{\kappa -1}, &{} 2 \le t \le (I-1)L+1,\\ \frac{(\kappa ^L-2) \cdot \kappa ^{(-t+1)} \cdot \kappa ^{I \cdot L}+1}{\kappa -1}, &{} (I-1)L+2 \le t \le LI+1, \\ \frac{\kappa ^{(-t+1)} \cdot \kappa ^{(I+1)L}-1}{\kappa -1}, &{} IL+2 \le t \le L(I+1). \\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(C9)

In addition, using the variables

$$\begin{aligned} u_0=\sum ^{T}_{t=1}u(t)/T \end{aligned}$$
(C10)

and

$$\begin{aligned} \delta u'(t)=u(t)-u_0, \end{aligned}$$
(C11)

we can write

$$\begin{aligned}&\delta P_1(I)^2 \nonumber \\&\quad = \frac{1}{L^2} \left\{ \sum ^{L(I+1)}_{t=2}g_0(t,I) u(t) \right\} ^2 \end{aligned}$$
(C12)
$$\begin{aligned}&=\frac{1}{L^2} \left\{ u_0^2 \cdot \left[ \sum ^{L(I+1)}_{t=2}g_0(t,I)\right] ^2+ \left[ \sum ^{L(I+1)}_{t=2}g_0(t,I) u'(t)\right] ^2 \right\} ^2 \nonumber \\&\approx \frac{1}{L^2} u_0^2 \cdot \left\{ \sum ^{L(I+1)}_{t=2}g_0(t,I) \right\} ^2 \end{aligned}$$
(C13)
$$\begin{aligned}&= \frac{1}{L^2} u_0^2 \cdot \left[ \frac{\kappa ^{(I-1)L} \cdot (\kappa ^L-1)^2}{(\kappa -1)^2}\right] ^2. \end{aligned}$$
(C14)

Hence, the temporal average of \(\delta P_1(I)^2\) is obtained by

$$\begin{aligned}&\bar{P}_1 \equiv \sum ^{T^{(L)}-1}_{I=1} \frac{\delta P_1(I)^2}{T^{(L)}-1} \end{aligned}$$
(C15)
$$\begin{aligned}&\approx \frac{1}{T^{(L)}-1} \cdot \sum ^{T^{(L)}-1}_{I=1} \frac{1}{L^2} u_0^2 \cdot [\frac{\kappa ^{(I-1)L} \cdot (\kappa ^L-1)^2}{(\kappa -1)^2}]^2 \nonumber \\&\quad = \frac{u_0^2}{L^2 \cdot (T^{(L)}-1)} \frac{(\kappa ^L-1)^3 (\kappa ^{2L(T^{(L)}-1)}-1)}{(\kappa -1)^4 \cdot (\kappa ^L+1)}.\nonumber \\ \end{aligned}$$
(C16)

Similarly, we estimate the effects of \(\delta P_2(I)^2\) as

$$\begin{aligned} \delta P_2(I)^2= & {} \frac{r(1)}{L^2} \cdot \frac{\kappa ^{2IL}(\kappa ^L+\kappa ^{-L}-2)^2}{(\kappa -1)^2}. \end{aligned}$$
(C17)

Therefore, the temporal average of \(\delta P_2(I)^2\) is obtained by

$$\begin{aligned}&\bar{P}_2 \equiv \sum ^{T^{(L)}-1}_{I=1}\frac{\delta P_2(I)^2}{T^{(L)}-1} \end{aligned}$$
(C18)
$$\begin{aligned}&\quad = \frac{r(1)^2}{L^2 \cdot (T^{(L)}-1)} \frac{(\kappa ^L-1)^3 (\kappa ^{2L(T^{(L)}-1)}-1)}{(\kappa -1)^2 \cdot (\kappa ^L+1)}.\nonumber \\ \end{aligned}$$
(C19)

Lastly, we investigate the effects of \(\delta P_3(I)^2\), i.e.,

$$\begin{aligned} \delta P_3(I)^2= & {} \frac{1}{L^2} \left\{ \sum ^{L(I+1)}_{t=2}g_0(t,I) \eta (t) \right\} ^2 \end{aligned}$$
(C20)
$$\begin{aligned}\approx & {} \frac{1}{L^2} \eta _0^2 \cdot \sum ^{L(I+1)}_{t=2}g_0(t,I)^2, \end{aligned}$$
(C21)

where, from the definition,

$$\begin{aligned} \eta _0^2 \approx \sum ^{T}_{t=1}\eta (t)^2/T. \end{aligned}$$
(C22)

We can calculate the sum of g(tI) with respect to t as

$$\begin{aligned} \sum ^{L(I+1)}_{t=2}g_0(t,I)^2=Q_1(I)+Q_2+Q_3, \end{aligned}$$
(C23)

where

$$\begin{aligned}&Q_1(I)\equiv \sum ^{(I-1)L+1}_{t=2}g_0(t,I)^2 =\frac{(\kappa ^L-1)^4 \cdot (\kappa ^{2(I-1)L}-1)}{(\kappa -1)^3 \cdot (\kappa +1)}, \nonumber \\ \end{aligned}$$
(C24)
$$\begin{aligned}&Q_2 \equiv \sum ^{LI+1}_{(I-1)L+2}g_0(t,I)^2 \nonumber \\&\quad =\frac{L(\kappa ^2-1)+(\kappa ^{2L}-3\kappa ^L+2)(\kappa ^{2L}-\kappa ^{L}+2 \kappa )}{(\kappa -1)^3 \cdot (\kappa +1)},\nonumber \\ \end{aligned}$$
(C25)
$$\begin{aligned}&Q_3 \equiv \sum ^{(I+1)L}_{LI+2}g_0(t,I)^2 \nonumber \\&\quad =\frac{(\kappa ^L-1)(\kappa ^L-2\kappa -1)+L(\kappa ^2-1)}{(\kappa -1)^3 \cdot (\kappa +1)}. \end{aligned}$$
(C26)

From these results, we can obtain the temporal average of \(\delta P_3(I)^2\) as

$$\begin{aligned}&\bar{P}_3 \equiv \sum ^{T^{(L)}-1}_{I=1}\frac{\delta P_3(I)^2}{T^{(L)}-1} \end{aligned}$$
(C27)
$$\begin{aligned}&\quad =\frac{\check{\eta }^2}{L^2(T^{(L)}-1)}\cdot (\bar{P}_{3a}+\bar{P}_{3b}+\bar{P}_{3c}). \end{aligned}$$
(C28)

Here,

$$\begin{aligned}&\bar{P}_{3a}\nonumber \\&\quad = \frac{(\kappa ^L-1)^3 \cdot (\kappa ^{2L(T^{(L)}-1)}-(T^{(L)}-1)\kappa ^{2L}+T^{(L)}-2)}{(\kappa -1)^3 (\kappa +1) (\kappa ^L+1)}, \nonumber \\ \end{aligned}$$
(C29)
$$\begin{aligned}&\bar{P}_{3b}=(T^{(L)}-1) \nonumber \\&\quad \times \frac{L \cdot (\kappa ^2-1) +(\kappa ^{2L}-3\kappa ^L+2)(\kappa ^{2L}-\kappa ^L+2\kappa )}{(\kappa -1)^3 (\kappa +1)}, \end{aligned}$$
(C30)
$$\begin{aligned}&\bar{P}_{3c}=(T^{(L)}-1) \cdot \frac{L \cdot (\kappa ^2-1) + (\kappa ^L-1)(\kappa ^L-2\kappa -1)}{(\kappa -1)^3 (\kappa +1)}. \nonumber \\ \end{aligned}$$
(C31)

Calculation of \(E[\delta R]^2\). Next, we calculate \(E[\delta R]^2\). \(E[\delta R]^2\) can be decomposed as follows:

$$\begin{aligned}&E[\delta R]^2=(E[\delta P_1]+E[\delta P_2]+E[\delta P_3])^2 \nonumber \\&\quad = E[\delta P_1]^2+E[\delta P_2]^2+2 \cdot E[\delta P_1] \cdot E[\delta P_2]\nonumber \\ \end{aligned}$$
(C32)
$$\begin{aligned}&+ 2E[\delta P_3](E[\delta P_1]+E[\delta P_2]+E[\delta P_3]) \nonumber \\&\quad \approx E[\delta P_1]^2+E[\delta P_2]^2+2 \cdot E[\delta P_1] \cdot E[\delta P_2],\nonumber \\ \end{aligned}$$
(C33)

where we use \(E[\delta P_3] \approx 0\).

\(E[\delta P_1]\) and \(E[\delta P_2]\) are obtained as

$$\begin{aligned}&E[\delta P_{1}]=P_{1}[T^{(L)}]-P_{1}[1] \end{aligned}$$
(C34)
$$\begin{aligned}&\,\, =\frac{u_0}{T^{(L)}-1} \cdot \frac{1}{L}\left[ \frac{-\kappa ^{(T^{(L)}-1)L}+\kappa ^{T^{(L)}L}-\kappa ^L+1}{(\kappa -1)^2}\right] , \nonumber \\ \end{aligned}$$
(C35)
$$\begin{aligned}&E[\delta P_{2}]=P_{2}[T^{(L)}]-P_{2}[1] \end{aligned}$$
(C36)
$$\begin{aligned}&\,\, = \frac{r(1)}{T^{(L)}-1} \cdot \frac{1}{L}\left[ \frac{-\kappa ^{(T^{(L)}-1)L}+\kappa ^{T^{(L)}L}-\kappa ^L+1}{\kappa -1}\right] . \nonumber \\ \end{aligned}$$
(C37)

Calculation of \(V[R^{(L)}]\). Lastly, we calculate \(V[R^{(L)}]\). Substituting Eqs. (C7) and (C37) for Eq. (C6), we can obtain

$$\begin{aligned}&V[R^{(L)}] \nonumber \\&\,\, \approx R^{(1)} \cdot u_0^2 +R^{(2)} \cdot \check{\eta }^2 +R^{(3)} \cdot r(1)^2+R^{(4)} \cdot u_0 \cdot r(1),\nonumber \\ \end{aligned}$$
(C38)

Where, from Eqs. (C16) and (C35C36),

$$\begin{aligned}&R^{(1)} =R_1^{(1)}+R_2^{(1)}, \end{aligned}$$
(C39)
$$\begin{aligned}&R_1^{(1)}= \frac{1}{L^2 \dot{(}T^{(L)}-1)}\left[ \frac{(\kappa ^L-1)^3 \cdot (\kappa ^{2L(T^{(L)}-1)}-1)}{(\kappa -1)^4 \cdot (\kappa ^L+1)}\right] ,\nonumber \\ \end{aligned}$$
(C40)
$$\begin{aligned}&R_2^{(1)}=-\frac{1}{L^2 \cdot (T^{(L)}-1)^2} \cdot W_1^2, \end{aligned}$$
(C41)
$$\begin{aligned}&W_1=\frac{\kappa ^{T^{(L)}L}-\kappa ^{(T^{(L)}-1)L}+1-\kappa ^L}{(\kappa -1)^2}; \end{aligned}$$
(C42)

from Eq. (C28),

$$\begin{aligned}&R^{(2)} =R_1^{(2)}+R_2^{(2)}+R_3^{(2)}, \end{aligned}$$
(C43)
$$\begin{aligned}&R_{1}^{(2)}= \frac{1}{L^2 \cdot (T^{(L)}-1)} \nonumber \\&\quad \times \frac{(\kappa ^L-1)^3 \cdot (\kappa ^{2L(T^{(L)}-1)}-(T^{(L)}-1)\kappa ^{2L}+T^{(L)}-2)}{(\kappa -1)^3 (\kappa +1) (\kappa ^L+1)}, \nonumber \\ \end{aligned}$$
(C44)
$$\begin{aligned}&R_{2}^{(2)}=\frac{1}{L^2}\nonumber \\&\quad \cdot \frac{L \cdot (\kappa ^2-1) +(\kappa ^{2L}-3\kappa ^L+2)(\kappa ^{2L}-\kappa ^L+2\kappa )}{(\kappa -1)^3 (\kappa +1)}, \end{aligned}$$
(C45)
$$\begin{aligned}&{R}_{3}^{(2)}=\frac{1}{L^2} \cdot \frac{L \cdot (\kappa ^2-1) + (\kappa ^L-1)(\kappa ^L-2\kappa -1)}{(\kappa -1)^3 (\kappa +1)}; \end{aligned}$$
(C46)

from Eqs. (C19) and (C37),

$$\begin{aligned}&R^{(3)} =R_1^{(3)}+R_2^{(3)}, \end{aligned}$$
(C47)
$$\begin{aligned}&R_{1}^{(3)} = \frac{1}{L^2 \cdot (T^{(L)}-1)} \frac{(\kappa ^L-1)^3 \cdot (\kappa ^{2L(T^{(L)}-1)}-1)}{(\kappa -1)^2 \cdot (\kappa ^L+1)},\nonumber \\ \end{aligned}$$
(C48)
$$\begin{aligned}&R_{2}^{(3)}=-\frac{1}{L^2 \cdot (T^{(L)}-1)^2} \cdot W_2^2, \end{aligned}$$
(C49)
$$\begin{aligned}&W_2=\frac{\kappa ^{T^{(L)}L}-\kappa ^{(T^{(L)}-1)L}+1-\kappa ^L}{\kappa -1}; \end{aligned}$$
(C50)

and, from Eqs. C35 and C37,

$$\begin{aligned} R^{(4)}=-\frac{2}{L^2 \cdot (T^{(L)}-1)^2} \cdot W_1 \cdot W_2. \end{aligned}$$
(C51)

1.1 Appendix C.1: Calculation of \(V[{R^{(L)}}^2]\) for large L

We calculate \(V[{R^{(L)}}^2]\) for \(L>>1\). Here, we assume \(L/2 \ge T\).

Case of \(\kappa <1\):

Using \(\kappa ^L \approx 0\) and \(\kappa ^T \approx 0\), we can obtain

$$\begin{aligned}&R_1^{(1)} \approx \frac{1}{L(T-L)} \frac{1}{(\kappa -1)^4}, \end{aligned}$$
(C52)
$$\begin{aligned}&R_2^{(1)} \approx \frac{1}{(T-L)^2} \frac{1}{(\kappa -1)^4}, \end{aligned}$$
(C53)
$$\begin{aligned}&R_1^{(2)} \approx \frac{2L-T}{L^2 (T-L)} \cdot \frac{1}{(\kappa -1)^3 \cdot (\kappa +1)}, \end{aligned}$$
(C54)
$$\begin{aligned}&R_2^{(2)} \approx \frac{1}{L} \cdot \frac{1}{(\kappa -1)^2 }+\frac{1}{L^2} \cdot \frac{4k}{(\kappa -1)^3 \cdot (\kappa +1)},\nonumber \\ \end{aligned}$$
(C55)
$$\begin{aligned}&R_3^{(2)} \approx \frac{1}{L} \cdot \frac{1}{(\kappa -1)^2 }+\frac{1}{L^2} \cdot \frac{2\kappa +1}{(\kappa -1)^3 \cdot (\kappa +1)},\nonumber \\ \end{aligned}$$
(C56)
$$\begin{aligned}&R_1^{(3)} \approx \frac{1}{L(T-L)} \frac{1}{(\kappa -1)^2}, \end{aligned}$$
(C57)
$$\begin{aligned}&R_2^{(3)} \approx \frac{1}{(T-L)^2} \frac{1}{(\kappa -1)^4}, \end{aligned}$$
(C58)
$$\begin{aligned}&R^{(4)} \approx \frac{1}{(T-L)^2} \frac{1}{(\kappa -1)^3}. \end{aligned}$$
(C59)

Considering only dominant terms, we can obtain

$$\begin{aligned} V[\delta R^{(L)}]\approx \frac{2}{L} \frac{ \check{\eta }^2 }{(\kappa -1)^2 } + \frac{1}{L(T-L)}( \frac{u_0^2}{(\kappa -1)^4}+ \frac{r(1)^2}{(\kappa -1)^2}). \nonumber \\ \end{aligned}$$

In the case of \(T-L>>1\), we can obtain the simpler form

$$\begin{aligned} V[\delta R^{(L)}] \approx \check{\eta }^2 \frac{2}{L} \cdot \frac{1}{(\kappa -1)^2 } \propto \frac{1}{L}. \end{aligned}$$
(C60)

Case of \(\kappa =1\): Next, we calculate the case of \(\kappa =1\). Taking the limit of \(\kappa \rightarrow 1\), we get

$$\begin{aligned}&R_1^{(1)} \approx L^2, \end{aligned}$$
(C61)
$$\begin{aligned}&R_2^{(1)} \approx -L^2, \end{aligned}$$
(C62)
$$\begin{aligned}&R_1^{(2)} \approx 0, \end{aligned}$$
(C63)
$$\begin{aligned}&R_2^{(2)} \approx \frac{2L^3+3L^2+L}{6} \cdot \frac{1}{L^2}, \end{aligned}$$
(C64)
$$\begin{aligned}&R_3^{(2)} \approx \frac{2L^3-3L^2+L}{6} \cdot \frac{1}{L^2}, \end{aligned}$$
(C65)
$$\begin{aligned}&R_1^{(3)} \approx 0, \end{aligned}$$
(C66)
$$\begin{aligned}&R_2^{(3)} \approx 0, \end{aligned}$$
(C67)
$$\begin{aligned}&R^{(4)} \approx 0. \end{aligned}$$
(C68)

From these results, we can obtain

$$\begin{aligned} V[R^{(L)}] \approx \frac{1}{3} \cdot \check{\eta }^2 \cdot (2L+1/L) \propto L. \end{aligned}$$
(C69)

Case of \( \kappa >1\): Lastly, we calculate the case of \( \kappa >1\) for \(L>>1\).

Calculation of \(R^{(1)}\). For \(L>>1\), in the case of \( \kappa >1\), a dominant term of \(R_1^{(1)}\) is given by

$$\begin{aligned} R_1^{(1)} \approx \frac{1}{L(T-L)} \frac{k^{2T}}{(k-1)^4}. \end{aligned}$$
(C70)

In a similar way,

$$\begin{aligned} R_2^{(1)} \approx \frac{-1}{(T-L)^2}\frac{k^{2T}}{(k-1)^4}. \end{aligned}$$
(C71)

Calculation of \(R^{(2)}\).

For \(L>>1\),

$$\begin{aligned} R_1^{(2)}\approx & {} \frac{\kappa ^{2T}}{L(T-L)} \frac{1}{(\kappa -1)^3 \cdot (\kappa +1)}. \end{aligned}$$
(C72)

Similarly,

$$\begin{aligned}&R_2^{(2)} \approx \frac{\kappa ^{4L}}{L^2} \frac{1}{(\kappa -1)^3 \cdot (\kappa +1)}, \end{aligned}$$
(C73)
$$\begin{aligned}&R_3^{(2)} \approx \frac{\kappa ^{2L}}{L^2} \frac{1}{(\kappa -1)^3 \cdot (\kappa +1)}. \end{aligned}$$
(C74)

Therefore,

$$\begin{aligned} R^{(2)} \approx \frac{\kappa ^{2T}}{L(T-L)} \frac{1}{(\kappa -1)^3 \cdot (\kappa +1)}. \end{aligned}$$
(C75)

Calculation of \(R^{(3)}\) and \(R^{(4)}\). For a large L,

$$\begin{aligned}&R_1^{(3)} \approx \frac{\kappa ^{2T}}{L(T-L)} \frac{1}{(\kappa -1)^2}, \end{aligned}$$
(C76)
$$\begin{aligned}&R_2^{(3)} \approx -\frac{\kappa ^{2T}}{(T-L)^2} \frac{1}{(\kappa -1)^2}. \end{aligned}$$
(C77)

Therefore,

$$\begin{aligned} R^{(3)} \approx \frac{\kappa ^{2T}}{(T-L) \cdot (\kappa -1)^2} [\frac{1}{L}-\frac{1}{T-L}]. \end{aligned}$$
(C78)

\(R^{(4)}\) is also approximated as

$$\begin{aligned} R^{(4)} \approx -\frac{2 \cdot \kappa ^{2T}}{(T-L)^2} [\frac{1}{(\kappa -1)^3}]. \end{aligned}$$
(C79)

Consequently, for \(T>>L>>1\), we can obtain

$$\begin{aligned} V[\delta R^{(L)}] \propto \frac{\kappa ^{2T}}{L(T-L)}. \end{aligned}$$
(C80)

Appendix D: \(V[\delta R_j^{(L)}]\) for the power-law forgetting

We calculate \(V[\delta R_j^{(L)}]\) for the power-law forgetting process given by Eq. (13). Here, we consider \(L \ge 2\) and omit the suffix j for simplification. R(I) is defined by

$$\begin{aligned} R(I)=\sum _{t=LI+1}^{L(I+1)}\frac{r(t)}{L}. \end{aligned}$$
(D1)

From the definition, r(t) is written as

$$\begin{aligned} r(t)=\sum _{s=0}^{\infty } \theta (s) \cdot \eta (t-s), \end{aligned}$$
(D2)

where

$$\begin{aligned} \theta (s) \equiv \frac{1}{Z(\beta )}(s+ d_\beta )^{-\beta }. \end{aligned}$$
(D3)

Then, we can calculate

$$\begin{aligned} R(I)=\frac{1}{L}\sum ^{LI+1}_{t=-\infty }\theta _1'(t) \eta (t) + \sum ^{L(I+1)}_{t=LI+2}\theta _2'(t)\eta (t), \end{aligned}$$
(D4)

where

$$\begin{aligned} \theta _1'(t)= & {} \sum ^{L-1}_{k=0} \theta (k+LI+1-t), \end{aligned}$$
(D5)
$$\begin{aligned} \theta _2'(t)= & {} \sum ^{L-(t-LI)}_{k=0} \theta (k). \end{aligned}$$
(D6)

In a similar way, we can also calculate \(R(I+1)\) as follows:

$$\begin{aligned} R(I+1)=\frac{1}{L}\sum ^{L(I+1)+1}_{t=-\infty }\theta _3'(t) \eta (t) + \sum ^{L(I+2)}_{t=L(I+1)+2}\theta _4'(t)\eta (t),\nonumber \\ \end{aligned}$$
(D7)

where

$$\begin{aligned} \theta _3'(t)= & {} \sum ^{L-1}_{k=0} \theta (k+L(I+1)+1-t), \end{aligned}$$
(D8)
$$\begin{aligned} \theta _4'(t)= & {} \sum ^{L-(t-L(I+1))}_{k=0} \theta (k). \end{aligned}$$
(D9)

From these results, \(\delta R(I)=R(I+1)-R(I)\) can be calculated as

$$\begin{aligned}&\delta R(I)= R(I+1)-R(I) \end{aligned}$$
(D10)
$$\begin{aligned}&=\frac{1}{L} \sum ^{LI+1}_{t=-\infty }(\theta _3'(t)-\theta _1'(t)) \eta (t) +\sum ^{L(I+1)}_{t=LI+2}(\theta _3'(t)-\theta _2'(t)) \eta (t) \nonumber \\&\quad +\sum ^{L(I+2)}_{t=L(I+1)+1}\theta _4'(t) \eta (t). \end{aligned}$$
(D11)

Taking the average of \(\delta R(I)\) with respect to \(\eta \) gives

$$\begin{aligned}&V_{\eta }[\delta R] \approx E_{\eta }[(R(I+1)-R(I))^2] \nonumber \\&\quad = \frac{\check{\eta }^2}{L^2} \Bigg \{\sum ^{LI+1}_{t=-\infty }(\theta _3'(t)-\theta _1'(t))^2 \nonumber \\&\qquad +\sum ^{L(I+1)}_{t=LI+2}(\theta _3'(t)-\theta _2'(t))^2 +\sum ^{L(I+2)}_{t=L(I+1)+1}\theta _4'(t)^2 \Bigg \} \nonumber \\&\quad =\frac{\check{\eta }^2}{L^2 Z(\beta )^2} (U_1(\beta ,L)+U_2(\beta ,L)+U_3(\beta ,L)),\nonumber \\ \end{aligned}$$
(D12)

where we use \(E[\delta R] \approx 0\) because \(<\eta (t)>=0\).

Here, \(U_1(\beta ,L)\), \(U_2(\beta ,L)\), and \(U_3(\beta ,L)\) are defined as

$$\begin{aligned}&U_1(\beta ,L)=\sum ^{LI+1}_{t=-\infty }\frac{ Z(\beta )^2}{\check{\eta }^2} (\theta _3'(t)-\theta _1'(t))^2, \end{aligned}$$
(D13)
$$\begin{aligned}&U_2(\beta ,L)=\sum ^{L(I+1)}_{t=LI+2} \frac{ Z(\beta )^2}{\check{\eta }^2}(\theta _3'(t)-\theta _2'(t))^2, \end{aligned}$$
(D14)

and

$$\begin{aligned} U_3(\beta ,L)=\sum ^{L(I+2)}_{t=L(I+1)+1} \frac{ Z(\beta )^2}{\check{\eta }^2} (\theta _4'(t))^2. \end{aligned}$$
(D15)

We factor out \(Z(\beta )^2\) for later calculations. \(U_1(\beta ,L)\) is given by Eq. (D95), \(U_2(\beta ,L)\) is given by Eq. (D127), and \(U_3(\beta ,L)\) is given by Eq. (D145). The details of the derivations of these equations are given in the following section and beyond.

1.1 Appendix D.1: Calculation of \(U_1(\beta ,L)\)

Here, we calculate \(U_1(\beta ,L)\) defined by Eq. (D13):

$$\begin{aligned}&U_1(\beta ,L)\nonumber \\&\quad = \frac{ Z(\beta )^2}{\check{\eta }^2} \sum ^{LI+1}_{t=-\infty }(\theta _3'(t)-\theta _1'(t))^2 \end{aligned}$$
(D16)
$$\begin{aligned}&=\frac{ Z(\beta )^2}{\check{\eta }^2} \sum ^{LI+1}_{t=-\infty }\Bigg (\sum ^{L}_{i=1}\theta (k+L(I+1)+1-t) \nonumber \\&\quad -\sum ^{L}_{i=1}\theta (k+LI+1-t)\Bigg )^2. \end{aligned}$$
(D17)

By replacing the index t with a new index \(t'=t+LI+1\), \(U_1(\beta ,L)\) can be written as

$$\begin{aligned} U_1(\beta ,L)= \sum ^{\infty }_{t'=0}\frac{ Z(\beta )^2}{\check{\eta }^2}\left( \sum ^{L-1}_{k=0}\theta (t'+k+L)-\sum ^{L-1}_{k=0}\theta (t'+k)\right) ^2.\nonumber \\ \end{aligned}$$
(D18)

Using the Euler–Maclaurin formula [42], we can obtain

$$\begin{aligned}&\sum ^{b}_{k=a}g(k) \approx \int ^{b}_{a}g(x)\mathrm{d}x \nonumber \\&\quad +\frac{1}{2}(g(b)+g(a))+\frac{1}{12}(\frac{\mathrm{d}}{\mathrm{d}x}g(x)|_{b}-\frac{\mathrm{d}}{\mathrm{d}x}g(x)|_{a}), \nonumber \\ \end{aligned}$$
(D19)

and then we make the approximation

$$\begin{aligned}&U_1 \approx \frac{ Z(\beta )^2}{\check{\eta }^2} \sum ^{\infty }_{t'=0} \left\{ \theta (t'+L)+\frac{\theta (t'+2L-1)+\theta (t'+L+1)}{2} \right. \nonumber \\&\qquad +\frac{\theta '(t'+2L-1)-\theta '(t'+L+1)}{12} \nonumber \\&\qquad +\int ^{L-1}_{1}\theta (t'+k+L)\mathrm{d}k \nonumber \\&\qquad - \, \theta (t')-\frac{\theta (t'+L-1)+\theta (t'+1)}{2} \nonumber \\&\qquad -\left. \frac{\theta '(t'+L-1)-\theta '(t'+1)}{12}-\int ^{L-1}_{1} \theta (t'+k) \mathrm{d}k \right\} ^2. \nonumber \\ \end{aligned}$$
(D20)

Substituting Eq. (D3) into \(\theta (t')\) and performing some calculations, for \(\beta >0\) and \(\beta \ne 1\), we obtain

$$\begin{aligned}&U_1 \approx \sum ^{\infty }_{t'=0}\left\{ \sum ^{3}_{k=1}J^{(-1)}_{A,k} (t+A^{(-1)}_k)^{-(\beta -1)} \right. \nonumber \\&\quad +\left. \sum ^{6}_{k=1}J^{(0)}_{A,k} ((t+A^{(0)}_k)^{-\beta }+ \sum ^{3}_{k=1}J^{(+1)}_{A,k}(t+A^{(+1)}_k)^{-(\beta +1)}\right\} ^2.\nonumber \\ \end{aligned}$$
(D21)

For \(\beta =1\),

$$\begin{aligned}&U_1 \approx \sum ^{\infty }_{t'=0}\left\{ \sum ^{3}_{k=1}J^{(-1)}_{A,k} \log (t+A^{(-1)}_k) \right. \nonumber \\&\quad \left. + \sum ^{6}_{k=1}J^{(0)}_{A,k} ((t+A^{(0)}_k)^{-\beta }+ \sum ^{3}_{k=1}J^{+1}_{A,k}(t+A^{(+1)}_k)^{-(\beta +1)}\right\} ^2. \nonumber \\ \end{aligned}$$
(D22)

We combine the two equations into

$$\begin{aligned}&U_1 \approx \sum ^{\infty }_{t'=0}\left\{ \sum ^{+1}_{m=-1} \sum _{k=1}^{p_m}J^{(m)}_{A,k} f_A(t,\beta +m,A^{(m)}_k) \right\} ^2,\nonumber \\ \end{aligned}$$
(D23)

where

$$\begin{aligned} f_A(x,\alpha ,U)= & {} {\left\{ \begin{array}{ll} (x+U)^{-\alpha } &{} (\alpha \ne 0), \\ \log (x+U) &{} (\alpha =0), \end{array}\right. } \end{aligned}$$
(D24)
$$\begin{aligned} A_1^{(-1)}= & {} =A_1^{(+1)}=2L-1-d_{\beta }, \end{aligned}$$
(D25)
$$\begin{aligned} A_2^{(-1)}= & {} A_2^{(+1)}=L+1+d_{\beta },\end{aligned}$$
(D26)
$$\begin{aligned} A_3^{(-1)}= & {} A_3^{(+1)}=L-1+d_{\beta }, \end{aligned}$$
(D27)
$$\begin{aligned} A_4^{(-1)}= & {} A_4^{(+1)}=1+d_{\beta },\end{aligned}$$
(D28)
$$\begin{aligned} A_1^{(0)}= & {} 2L-1+d_{\beta }, \end{aligned}$$
(D29)
$$\begin{aligned} A_2^{(0)}= & {} 1+L+d_{\beta }, \end{aligned}$$
(D30)
$$\begin{aligned} A_3^{(0)}= & {} L+d_{\beta }, \end{aligned}$$
(D31)
$$\begin{aligned} A_4^{(0)}= & {} L-1+d_{\beta }, \end{aligned}$$
(D32)
$$\begin{aligned} A_5^{(0)}= & {} 1+d_{\beta }, \end{aligned}$$
(D33)
$$\begin{aligned} A_6^{(0)}= & {} d_{\beta }, \end{aligned}$$
(D34)

\(p_{-1}=p_{1}=4\), \(p_{0}=6\),

$$\begin{aligned} J^{(-1)}_{A,1}= & {} J^{(-1)}_{A,4}= {\left\{ \begin{array}{ll} 1/(1-\beta ) &{} {(\beta \ne 1)}, \\ 1 &{} {(\beta = 1)}, \\ \end{array}\right. } \end{aligned}$$
(D35)
$$\begin{aligned} J^{(-1)}_{A,2}= & {} J^{(-1)}_{A,3}= {\left\{ \begin{array}{ll} -1/(1-\beta ) &{} {(\beta \ne 1)},\\ -1 &{} {(\beta = 1)},\\ \end{array}\right. } \end{aligned}$$
(D36)
$$\begin{aligned} J^{(0)}_{A,1}= & {} J^{(0)}_{A,2}=1/2, \end{aligned}$$
(D37)
$$\begin{aligned} J^{(0)}_{A,3}= & {} 1, \end{aligned}$$
(D38)
$$\begin{aligned} J^{(0)}_{A,4}= & {} J^{(0)}_{A,5}=-1/2, \end{aligned}$$
(D39)
$$\begin{aligned} J^{(0)}_{A,6}= & {} -1, \end{aligned}$$
(D40)

and

$$\begin{aligned} J^{(+1)}_{A,1}= & {} J^{(+1)}_{A,3}=1/12 \cdot \beta ,\end{aligned}$$
(D41)
$$\begin{aligned} J^{(+1)}_{A,2}= & {} J^{(+1)}_{A,4}=-1/12 \cdot \beta . \end{aligned}$$
(D42)

We expand \(U_1\) as

$$\begin{aligned}&U_1 \approx \sum ^{\infty }_{t'=0}\left\{ \sum ^{+1}_{m=-1} \sum _{k=1}^{p_m}J^{(m)}_{A,k} f_A(t,\alpha +m,A^{(m)}_k) \right\} ^2 \nonumber \\&\quad =\sum ^{+1}_{m_1=-1}U_1^{(2)}(t;\beta ,m_1,m_1)+2 \sum _{m_1>m_2}U_1^{(2)}(t;\beta ,m_1,m_2),\nonumber \\ \end{aligned}$$
(D43)

where

$$\begin{aligned}&U^{(2)}_1(t;\beta ,m_1,m_2) =\sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} \nonumber \\&\quad \lim _{Q \rightarrow \infty } \sum ^{Q}_{t=0}f_A(t,\beta +m_i,A^{(m)}_i)f_A(t,\beta +m_j,A^{(m)}_j).\nonumber \\ \end{aligned}$$
(D44)

We calculate \(U^{(2)}_1(t;\beta ,m_1,m_2)\). Using the Euler–Maclaurin formula in Eq. (D19), we can obtain

$$\begin{aligned}&\sum ^{Q}_{t=0}f_A(t,\alpha _1,V_1)f_A(t,\alpha _2,V_2) \nonumber \\&\quad \approx G_2^{(R)}(1,Q;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\qquad +\int ^Q_1 (t+V_1)^{-\alpha _1}(t+V_2)^{-\alpha _2} \mathrm{d}t \nonumber \\&\quad \approx G_2^{(R)}(1,Q;\alpha _1,\alpha _2,V_1,V_2)+G_2^{(I)}(Q;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\qquad -G_2^{(I)}(1;\alpha _1,\alpha _2,V_1,V_2). \end{aligned}$$
(D45)

(i) For \(\alpha _1 \ne 1\), \(\alpha _2 \ne 1\) \(x_1=0\), and \(x_2=0\), \(G_2^{(R)}(x_1,x_2;\alpha _1,\alpha _2,V_1,V_2)\) is given by

$$\begin{aligned}&G_2^{(R)}(x_1,x_2;\alpha _1,\alpha _2,V_1,V_2)=(V_1)^{-\alpha _1}(V_2)^{-\alpha _2} \nonumber \\&\quad +\frac{1}{2}\{(V_1+x_1)^{-\alpha _1}(V_2+x_1)^{-\alpha _2} \nonumber \\&\quad +(V_1+x_2)^{-\alpha _1}(V_2+x_2)^{-\alpha _2}\} \nonumber \\&\quad -\frac{1}{12}\{(\alpha _2(V_2+x_2)+\alpha _1(V_1+x_2)) \nonumber \\&\quad \times (V_1+x_2)^{-\alpha _1-1}(V_2+x_2)^{-\alpha _2-1} \nonumber \\&\quad -(\alpha _2(V_1+x_1)+\alpha _1(V_2+x_1)) \nonumber \\&\quad \times (V_1+x_1)^{-\alpha _1-1}(V_2+x_1)^{-\alpha _2-1}\}. \end{aligned}$$
(D46)

Here, because Q approaches zero for \(Q>>1\), \(G_2^{(R)}(x,Q;0,\alpha _2,V_1,V_2)\) is not dependent on Q. Accordingly, we can denote \(G_2^{(R)}(x,Q;0,\alpha _2,V_1,V_2)\) as \(G_2^{(R \rightarrow Q)}(x;\alpha _1,\alpha _2,V_1,V_2)\).

\(G_2^{(R \rightarrow Q)}(x;\alpha _1,\alpha _2,V_1,V_2)\) is written as

$$\begin{aligned}&G_2^{(R \rightarrow Q)}(x;\alpha _1,\alpha _2,V_1,V_2)=(V_1)^{-\alpha _1}(V_2)^{-\alpha _2} \nonumber \\&\quad + \frac{1}{2}\{(V_1+x_1)^{-\alpha _1}(V_2+x_1)^{-\alpha _2}\} \nonumber \\&\quad -\frac{1}{12}\{ -(\alpha _2(V_1+x_1)+\alpha _1(V_2+x_1)) \nonumber \\&\quad \times (V_1+x_1)^{-\alpha _1-1}(V_2+x_1)^{-\alpha _2-1}\}. \end{aligned}$$
(D47)

As a special point, for \(x_1=0\) and \(x_2=0\), we determine

$$\begin{aligned} G_2^{(R)}(0,0;\alpha _1,\alpha _2,V_1,V_2)&=G_2^{(R \rightarrow Q)}(x;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&=(V_1)^{-\alpha _1}(V_2)^{-\alpha _2}. \end{aligned}$$
(D48)

(ii) In the case of \(\alpha _1 = 1\) and \(\alpha _2 = 1\), we can also calculate

$$\begin{aligned}&G_2^{(R)}(x_1,x_2;0,0,V_1,V_2)=\log (V_1) \log (V_2) \nonumber \\&\quad + \frac{1}{2}\{\log (V_1+x_1)\log (V_2+x_1) \nonumber \\&\quad +\log (V_1+x_2)\log (V_2+x_2)\} \nonumber \\&\quad + \frac{1}{12}\{\frac{\log (V_1+x_2)}{V_2+x_2}+\frac{\log (V_2+x_2)}{V_1+x_2} \nonumber \\&\quad - (\frac{\log (V_1+x_1)}{V_2+x_1}+\frac{\log (V_2+x_1)}{V_1+x_1})\}, \end{aligned}$$
(D49)

and, for \(Q>>1\), we can obtain

$$\begin{aligned}&G_2^{(R)}(x_1,x_2;0,\alpha _2,V_1,V_2)=\log (V_1) V_2^{-\alpha _2}+ \nonumber \\&\quad \frac{1}{2}\Bigg \{\log (V_1+x_1)V_2^{-\alpha _2}+\log (V_1+x_2)(V_2+x_2)^{-\alpha _2}\Bigg \} \nonumber \\&\quad +\frac{1}{12} \times \Bigg \{ (V_2+x_2)^{-\alpha _2-1} \times \nonumber \\&\quad \frac{(-\beta (V_1+x_2)\log (V_1+x_2)+V_2+x_2)}{V_1+x_2} \nonumber \\&\quad - (V_2+x_1)^{-\alpha _2-1} \times \nonumber \\&\quad \frac{\left( -\beta (V_1+x_1)\log (V_1+x_1)+V_1+x_1\right) }{V_1+x_1}\Bigg \}. \end{aligned}$$
(D50)

As a special point, for \(x_1=0\) and \(x_2=0\), we determine

$$\begin{aligned}&G_2^{(R)}(0,0;0,0,V_1,V_2)=G_2^{(R \rightarrow Q)}(x;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\quad =\log (V_1) \log (V_2). \end{aligned}$$
(D51)

(iii) In the case of \(\alpha _1 = 1\) and \(\alpha _2 \ne 0\), we can also obtain

$$\begin{aligned}&G_2^{(R)}(x_1,x_2;0,\alpha _2,V_1,V_2)=\log (V_1) V_2^{-\alpha _2} \nonumber \\&\quad +\frac{1}{2}\Bigg \{\log (V_1+x_1)V_2^{-\alpha _2}+\log (V_1+x_2)(V_2+x_2)^{-\alpha _2}\Bigg \} \nonumber \\&\quad +\frac{1}{12} \times \nonumber \\&\quad \Bigg \{\frac{(V_2+x_2)^{-\alpha _2-1}(-\beta (V_1+x_2)\log (V_1+x_2)+V_2+x_2)}{V_1+x_2} \nonumber \\&\quad -(V_2+x_1)^{-\alpha _2-1} \times \nonumber \\&\quad \frac{(-\beta (V_1+x_1)\log (V_1+x_1)+V_1+x_1)}{V_1+x_1}\Bigg \}. \end{aligned}$$
(D52)

As a special point, for \(x_1=0\) and \(x_2=0\), we determine

$$\begin{aligned} G_2^{(R)}(0,0;0,\alpha _2,V_1,V_2)= \log (V_1) V_2^{-\alpha _2}. \end{aligned}$$
(D53)

Next, we calculate the integration term of Eq. (D45), \(G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2)\). \(G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2)\) is defined by

$$\begin{aligned}&G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\quad = {\left\{ \begin{array}{ll} \int (x+V_1)^{-\alpha _1}(x+V_2)^{-\alpha _2} \mathrm{d}x &{} (\alpha _1,\alpha _2>0), \\ \int \log (x+V_1) \log (x+V_2) \mathrm{d}x &{} (\alpha _1,\alpha _2=0), \\ \int \log (x+V_1) (x+V_2)^{-\alpha _2} \mathrm{d}x &{} (\alpha _1=0, \alpha _2>0), \\ \end{array}\right. }, \end{aligned}$$
(D54)

where we neglect an integral constant.

We calculate \(G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2)\).

(i) In the case of \(V_1=V_2\), \(\alpha _1 \ne 0\), and \(\alpha _2 \ne 0\), we can write

$$\begin{aligned}&G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2) =\frac{1}{1-\alpha _1-\alpha _2}(x+V_1)^{-\alpha _1-\alpha _2+1}. \nonumber \\ \end{aligned}$$
(D55)

(ii) When \(\alpha _1\) and \(\alpha _2\) are nonintegers, and \(V_1 \ne V_1\), we obtain

$$\begin{aligned}&G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2)= (V_j+x)^{1-\alpha _j}(V_i-V_j)^{-\alpha _i} \times \nonumber \\&\frac{{}_2F_1(\alpha _i,1-\alpha _j,2-\alpha _j,\frac{-(V_j+x)}{(V_i-V_j)})}{(1-\alpha _j)}, \end{aligned}$$
(D56)

where \(i={\arg \max }_{k \in \{1,2\}}\{V_k\}\) and \(j={\arg \min }_{k \in \{1,2\}}\{V_k\}\) (under this condition, \(G_2^{(I)}\) takes a real number).

(iii) For \(\alpha _1=1,2,3,\ldots \), \(\alpha _2=1,2,3,\ldots \) and \(V_1 \ne V_2\),

using a partial fraction decomposition,

$$\begin{aligned} \frac{1}{(z+q_1)^{n_1}(z+q_2)^{n_2}}=\sum _{k=1}^{n_1}\frac{h^{(1)}_k}{(z+q_1)^k}+\sum _{k=1}^{n_2}\frac{h^{(2)}_k}{(z+q_2)^k}, \nonumber \\ \end{aligned}$$
(D57)

with

$$\begin{aligned}&h^{(1)}_k=\frac{1}{(n_1-k)!}(-1)^{n_2}\frac{(n_1+n_2-k-1)!}{(n_2-1)!} \nonumber \\&\quad \times (-q_2+q_1)^{-n_1-n_2+k}, \nonumber \\&\quad h^{(2)}_k=\frac{1}{(n_2-k)!}(-1)^{n_1}\frac{(n_1+n_2-k-1)!}{(n_1-1)!}\nonumber \\&\quad \times (-q_1+q_2)^{-n_1-n_2+k}, \end{aligned}$$
(D58)

we can write

$$\begin{aligned}&G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\quad =h_1^{(1)}\log (x+V_1)+h_1^{(2)}\log (x+V_2) \nonumber \\&\qquad +\sum _{k=2}^{\alpha _1}\frac{1}{1-k}h^{(1)}_k (x+V_1)^{1-k}\nonumber \\&\qquad +\sum _{k=2}^{\alpha _2} \frac{1}{1-k} h^{(2)}_k (x+V_2)^{1-k}. \end{aligned}$$
(D59)

(iv) For \(\alpha _1=0\), \(\alpha _2=0\), and \(V_1 \ne V_2\), we can write

$$\begin{aligned}&G_2^{(I)}(x;0,0,V_1,V_2) \nonumber \\&\quad =Li_{2}(\frac{V_1+x}{V_1-V_2}) (V_2-V_1) \nonumber \\&\qquad +\log (V_1+x)\{(V_1+x)\log (V_2+x) \nonumber \\&\qquad +(V_2-V_1)\log (-\frac{V_2+x}{V_1-V_2})-V_1-x\} \nonumber \\&\qquad +V_1-V_2\log (V_2+x)-x\log (V_2+x)+2x, \nonumber \\ \end{aligned}$$
(D60)

where \(Li_{2}(x)\) is the polylogarithm.

(v) For \(\alpha _1=0\), \(\alpha _2=0\), and \(V_1=V_2\), we can write

$$\begin{aligned}&G_2^{(I)}(x;0,0,V_1,V_2) \nonumber \\&\quad =\log (V_1+x)^2 (V_1+x)+2\log (V_1+x)(-V_1-x) \nonumber \\&\qquad +2x+V_1. \end{aligned}$$
(D61)

(vi) For \(\alpha _1=0\), \(\alpha _2=1\), and \(V_1 \ne V_2\), we can write

$$\begin{aligned}&G_2^{(I)}(x;0,1,V_1,V_2) \nonumber \\&\quad =Li_{2}(\frac{V_1+x}{V_1-V_2}) + \log (V_1+x)\{\log (-\frac{V_2+x}{V_1-V_2})\}. \nonumber \\ \end{aligned}$$
(D62)

(vii) For \(\alpha _1=0\), \(\alpha _2=1\), and \(V_1=V_2\), we can write

$$\begin{aligned}&G_2^{(I)}(x;0,1,V_1,V_2)=\frac{1}{2}\log ^2(V_1+x). \end{aligned}$$
(D63)

(viii) For \(\alpha _1=0\), \(\alpha _2=2\), and \(V_1 \ne V_2\), we can write

$$\begin{aligned}&G_2^{(I)}(x;0,2,V_1,V_2) \nonumber \\&\quad =\frac{(V_2+x)\log (V_2+x)-(V_1+x)\log (V_1+x)}{(V_1-V_2)(V_2+x)}.\nonumber \\ \end{aligned}$$
(D64)

(ix) For \(\alpha _1=0\), \(\alpha _2=2\), and \(V_1= V_2\), we can write

$$\begin{aligned}&G_2^{(I)}(x;0,2,V_1,V_2)=-\frac{\log (V_1+x)+1}{V_1+x}. \end{aligned}$$
(D65)

Consequently, the summary of \(G_2^{(I)}\) is given by

$$\begin{aligned}&G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\quad ={\left\{ \begin{array}{ll} {(\alpha _1 \ne 0, \alpha _2 \ne 0, V_1=V_2): }\\ \frac{1}{1-\alpha _1-\alpha _2}(x+V_1)^{-\alpha _1-\alpha _2+1} \\ {(\alpha _2 \mathrm{and} \alpha _2 {\text {are noninteger}}, V_1 \ne V_2): }\\ \frac{(V_j+x)^{(1-\alpha _j)}(V_i-V_j)^{(-\alpha _i)}{}_2F_1(\alpha _i,1-\alpha _j,2-\alpha _j,\frac{-(V_j+x)}{(V_i-V_j)})}{(1-\alpha _j)} \\ {(\alpha _1, \alpha _2 \ge 2, \alpha _1 \mathrm{and} \alpha _2 {\text {are integers}}, V_1 \ne V_2): }\\ h_1^{(1)}\log (x+V_1)+h_1^{(2)}\log (x+V_2) \\ +\sum _{k=2}^{\alpha _1}\frac{1}{1-k}h^{(1)}_k (x+V_1)^{1-k} \\ +\sum _{k=2}^{\alpha _2} \frac{1}{1-k} h^{(2)}_k (x+V_2)^{1-k} \\ {(\alpha _1=0, \alpha _2=0, V_1= V_2): }\\ \log (V_1+x)^2 (V_1+x)+2\log (V_1+x)(-V_1-x) \\ +2x+V_1 \\ {(\alpha _1=0, \alpha _2=0, V_1 \ne V_2): }\\ Li_{2}(\frac{V_1+x}{V_1-V_2}) (V_2-V_1) \\ +\log (V_1+x)\{(V_1+x)\log (V_2+x) \\ +(V_2-V_1)\log (-\frac{V_2+x}{V_1-V_2})-V_1-x\} \\ +V_1-V_2\log (V_2+x)-x\log (V_2+x)+2x \\ {(\alpha _1=0, \alpha _2=1, V_1 = V_2): }\\ \frac{1}{2}\log ^2(V_1+x) \\ {(\alpha _1=0, \alpha _2=1, V_1 \ne V_2): }\\ Li_{2}(\frac{V_1+x}{V_1-V_2}) + \log (V_1+x)\{\log (-\frac{V_2+x}{V_1-V_2})\} \\ {(\alpha _1=0, \alpha _2=2, V_1=V_2): }\\ -\frac{\log (V_1+x)+1}{V_1+x} \\ {(\alpha _1=0, \alpha _2=2, V_1 \ne V_2): }\\ \frac{(V_2+x)\log (V_2+x)-(V_1+x)\log (V_1+x)}{(V_1-V_2)(V_2+x)}. \\ \end{array}\right. } \end{aligned}$$
(D66)

1.2 Appendix D.2: Calculation of \(G_2^{(Q)}(\beta ,m_1,m_2)\)

\(U_1(t;\beta ,m_1,m_2)\) is decomposed into

$$\begin{aligned}&U_1(t;\beta ,m_1,m_2) \nonumber \\&\quad =\sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} G_2^{(R)}(1,Q;\beta +m_1,\beta +m_2,A^{(m_1)}_i,A^{(m_2)}_j) \nonumber \\&\qquad - \sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} G_2^{(I)}(0;\beta +m_1,\beta +m_2,A^{(m_1)}_i,A^{(m_2)}_j) \nonumber \\&\qquad + \sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} G_2^{(I)}(Q;\beta +m_1,\beta +m_2,A^{(m_1)}_i,A^{(m_2)}_j).\nonumber \\ \end{aligned}$$
(D67)

We have already calculated \(G_2^{(R)}(1,Q;\alpha _1,\alpha _2,A^{(m_1)}_i,A^{(m_2)}_j)\) as \(G_2^{R \rightarrow Q}(x,\alpha _1,\alpha _2,V_1,V_2)\) in the previous sections. Here, we calculate

$$\begin{aligned}&G_2^{(Q)}(\beta ,m_1,m_2) \nonumber \\&\quad \equiv \sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} G_2^{(I)}(Q;\beta +m_1,\beta +m_2,A^{(m_1)}_i,A^{(m_2)}_j) \nonumber \\ \end{aligned}$$
(D68)

for \(Q>>1\).

(i) When \(\beta \) is a noninteger

We study the asymptotic behavior of \(G^{(I)}(Q;\alpha _1,\alpha _2,V_1,V_2)\) in Eq. (D68) for \(Q>>1\) in the case of \(V_1 \ne V_2\). Here, we use the following formulas of the asymptotic behavior of the hypergeometric function [43]. When \(b-a\), \(c-a\), a, b, and c are nonintegers for a large x,

$$\begin{aligned}&{}_2F_1(a,b,c,x) \nonumber \\&\quad \approx \frac{\varGamma (b-a) \varGamma (c)}{ \varGamma (b) \varGamma (c-a)}\frac{1}{(-x)^{a}} \nonumber \\&\qquad +\frac{(-1)^a a(1+a-c) \varGamma (b-a) \varGamma (c)}{(1+a-b)\varGamma (b) \varGamma (c-a)}\frac{1}{x^{a+1}} \nonumber \\&\qquad +\frac{(-1)^a a(1+a)(1+a-c)(2+a-c) \varGamma (b-a) \varGamma (c)}{2(1-a-b)(2-a+b)\varGamma (b) \varGamma (c-a)}\frac{1}{x^{a+2}} \nonumber \\&\qquad +\frac{\varGamma (a-b)\varGamma (c)}{\varGamma (a)\varGamma (c-b)}\frac{1}{(-x)^b}. \end{aligned}$$
(D69)

When both \(b-a\) and \(c-a\) are integers and \(c-b>0\) for a large x,

$$\begin{aligned}&{}_2F_1(a,b,c,x) \nonumber \\&\quad \approx \frac{\varGamma (b-a) \varGamma (c)}{ \varGamma (b) \varGamma (c-a)}\frac{1}{(-x)^{a}} \nonumber \\&\qquad +\frac{(-1)^a a(1+a-c) \varGamma (b-a) \varGamma (c)}{(1+a-b)\varGamma (b) \varGamma (c-a)}\frac{1}{x^{a+1}} \nonumber \\&\qquad +\frac{(-1)^a a(1+a)(1+a-c)(2+a-c) \varGamma (b-a) \varGamma (c)}{2(1+a-b)(2+a-b)\varGamma (b) \varGamma (c-a)}\frac{1}{x^{a+2}} \nonumber \\&\qquad +(-1)^{b-a}\varGamma (c) \nonumber \\&\qquad \frac{(\log (-x)+\psi (b-a+1)-\psi (c-b)-\psi (b)-\gamma )}{\varGamma (a)\varGamma (b-a+1)\varGamma (c-b)}\frac{1}{(-x)^b}. \nonumber \\ \end{aligned}$$
(D70)

When \(b=a\) and \(c-a\) are integers for a large x,

$$\begin{aligned}&{}_2F_1(a,b,c,x) \nonumber \\&\quad \approx \frac{ \varGamma (c)}{ \varGamma (a) \varGamma (c-a)}\frac{(\log (-z)-\psi (c-a)-\psi (a)-2\gamma )}{(-x)^{a}} \nonumber \\&\qquad +\frac{\varGamma (c)^2(-x)^{-c}}{\varGamma (a)^2(\varGamma (c-a+1))^2}. \end{aligned}$$
(D71)

Here, \(\gamma =0.5772\) is the Euler constant.

Using these formulas, the hypergeometric function in Eq. (D56) is written as

$$\begin{aligned}&{}_2F_1(\alpha _i,1-\alpha _j,2-\alpha _j,\frac{-(V_j+x)}{(V_i-V_j)})) \nonumber \\&\quad \approx P_1 (\frac{(V_i-V_j)}{Q+V_j})^{\alpha _i}+ P_2 (\frac{(V_i-V_j)}{Q+V_j})^{\alpha _i-1} \nonumber \\&\qquad + P_3 (\frac{(V_i-V_j)}{Q+V_j})^{\alpha _i-2} \nonumber \\&\qquad + P_4 (\frac{(V_i-V_j) }{Q+V_j})^{1-\alpha _j}\log (Q) + P_5(V_i,V_j) (\frac{(V_i-V_j)}{Q+V_j})^{1-\alpha _j},\nonumber \\ \end{aligned}$$
(D72)

where

$$\begin{aligned} P_1= & {} {\left\{ \begin{array}{ll} \frac{(1-\alpha _j)}{(1-\alpha _i-\alpha _j)} &{} {(\alpha _i+\alpha _j \ne 1)}, \\ 0 &{} {(\alpha _i+\alpha _j =1)}, \end{array}\right. } \end{aligned}$$
(D73)
$$\begin{aligned} P_2= & {} {\left\{ \begin{array}{ll} \frac{-\alpha _i(\alpha _i+\alpha _j-1)}{(\alpha _i+\alpha _j)}P_1 &{} {(\alpha _i+\alpha _j \ne 0)}, \\ 0 &{} {(\alpha _i+\alpha _j=0)}, \end{array}\right. } \end{aligned}$$
(D74)
$$\begin{aligned} P_3= & {} {\left\{ \begin{array}{ll} \frac{(1+\alpha _i)(\alpha _i+\alpha _j)}{2(1+\alpha _i+\alpha _j)}P_2 &{} {(\alpha _i+\alpha _j \ne -1)},\\ 0&{} {(\alpha _i+\alpha _j=-1)},\\ \end{array}\right. } \end{aligned}$$
(D75)
$$\begin{aligned} P_4= & {} {\left\{ \begin{array}{ll} 0 &{} (\alpha _i+\alpha _j\hbox { is a noninteger}), \\ \frac{\varGamma (2-\alpha _j)}{\varGamma (\alpha _i)} \frac{(-1)^{1-\alpha _i-\alpha _j}}{\varGamma (2-\alpha _i-\alpha _j)} &{} (\alpha _i+\alpha _j=0,-1,1), \end{array}\right. } \end{aligned}$$
(D76)
$$\begin{aligned} P_5(V_i,V_j)= & {} \frac{\varGamma (2-\alpha _j)}{\varGamma (\alpha _i)} \times \nonumber \\&{\left\{ \begin{array}{ll} (\alpha _i+\alpha _j\hbox { is a noninteger})\\ \varGamma (\alpha _i+\alpha _j-1) \\ {(\alpha _i+\alpha _j=-1,0,1)} \\ \frac{(-1)^{1-\alpha _i-\alpha _j}(-\log (V_i-V_j)+\psi (2-\alpha _i-\alpha _j)-\psi (1-\alpha _j))}{\varGamma (2-\alpha _i-\alpha _j)}.\\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(D77)

Substituting these results, we can obtain the following approximation:

$$\begin{aligned}&G_2^{(I)}(Q;\alpha _1,\alpha _2,V_1,V_2) \approx \frac{1}{1-\alpha _j} \nonumber \\&\quad \times \left\{ P_1 (Q+V_j)^{1-\alpha _i-\alpha _j} \right. \nonumber \\&\quad + P_2 (V_i-V_j)(Q+V_j)^{-\alpha _i-\alpha _j} \nonumber \\&\quad + P_3 (V_i-V_j)^2 (Q+V_j)^{-\alpha _i-\alpha _j-1} \nonumber \\&\quad + P_4 (V_i-V_j)^{1-\alpha _i-\alpha _j}\log (Q) \nonumber \\&\quad \left. + P_5(V_i,V_j)\times (V_i-V_j)^{1-\alpha _i-\alpha _j} \right\} , \end{aligned}$$
(D78)

where \(i={\arg \max }_{k \in \{1,2\}}\{V_k\}\) and \(j={\arg \min }_{k \in \{1,2\}}\{V_k\}\). (Under this condition, \(G_2^{(I)}\) takes a real number.)

In addition, using the asymptotic behavior of the power-law function,

$$\begin{aligned} (Q+V)^{\alpha } \approx Q^{\alpha }+(\alpha )VQ^{\alpha -1}+\frac{(\alpha )(\alpha -1)}{2}V^2 Q^{\alpha -2}, \nonumber \\ \end{aligned}$$
(D79)

we can obtain \(G_2^{(I)}\) as a sum of the power-law function of Q,

$$\begin{aligned}&G_2^{(I)}(Q;\alpha _1,\alpha _2,V_1,V_2) \approx \frac{1}{1-\alpha _j} \nonumber \\&\quad \times \left\{ P_1 Q^{1-\alpha _i-\alpha _j}+ (P_1(-\alpha _i-\alpha _j+1)V_j \right. \nonumber \\&\quad +P_2(V_i-V_j))Q^{-\alpha _i-\alpha _j} \nonumber \\&\quad + (\frac{P_1}{2}(-\alpha _i-\alpha _j+1)(-\alpha _i-\alpha _j)V_j^2 \nonumber \\&\quad +P_2(-\alpha _i-\alpha _j)(V_i-V_j)V_j \nonumber \\&\quad +P_3 (V_i-V_j)^2) Q^{-\alpha _i-\alpha _j-1} \nonumber \\&\quad + P_4 (V_i-V_j)^{1-\alpha _i-\alpha _j}\log (Q) \nonumber \\&\quad \left. + P_5(V_i,V_j)\times (V_i-V_j)^{1-\alpha _i-\alpha _j} \right\} . \end{aligned}$$
(D80)

For \(V_1=V_2\), using Eq. (D79), Eq. (D55) is approximated as

$$\begin{aligned}&G_2^{(I)}(x;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\quad \approx \frac{1}{1-\alpha _1-\alpha _2}(Q+V_2)^{-\alpha _1-\alpha _2+1} \nonumber \\&\quad \approx \frac{1}{1-\alpha _1-\alpha _2} (Q^{-\alpha _1-\alpha _2+1}+(-\alpha _1-\alpha _2+1)V_2Q^{-\alpha _1-\alpha _2} \nonumber \\&\qquad +\frac{(-\alpha _1-\alpha _2)(-\alpha _1-\alpha _2+1)}{2}V_2^2 Q^{-\alpha _1-\alpha _2-1}). \end{aligned}$$
(D81)

Hence, because \(Q^{a} \rightarrow 0\) (\(a<0\), \(Q>>1\)),

$$\begin{aligned}&G_2^{(Q)}(\beta ,m_1,m_2) \nonumber \\&\quad \approx \sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} G^{(I)}(Q;\beta +m_1,\beta +m_2,A^{(m_1)}_i,A^{(m_2)}_j) \nonumber \\&\quad \approx \sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)} \Bigg [ \nonumber \\&\quad {\left\{ \begin{array}{ll} \frac{ P_5(V_q,V_r) \times (V_q-V_r)^{1-2\beta -m_1-m_2}}{1-\beta -m_s} &{} {(V_q \ne V_r)}, \\ 0 &{} {(V_q = V_r)}, \\ \end{array}\right. } \nonumber \\&\qquad + {\left\{ \begin{array}{ll} 0 &{} {(2\beta +m_1+m_2 \ne 0)}, \\ V_r &{} {(2\beta +m_1+m_2 = 0)}, \\ \end{array}\right. } \Bigg ]\nonumber \\ \end{aligned}$$
(D82)

where \(V_q=\max \{A^{(m_1)}_i,A^{(m_2)}_j\}\), \(V_r=\min \{A^{(m_1)}_i,A^{(m_2)}_j\}\), \(s=\arg \min _{\{u=1,2\}}\{A_{q_u}^{(m_u)}\}\), and \((q_1,q_2)=(i,j)\).

Case of \(\beta =1\)

We use the approximation formulas for \(x>>1\),

$$\begin{aligned}&Li_2(x) \approx -\frac{1}{2}\log (-x)^2-\frac{\pi ^2}{6}, \end{aligned}$$
(D83)
$$\begin{aligned}&\log (x+A) \approx \log (x)+\frac{A}{x} . \end{aligned}$$
(D84)

From Eqs. (D60) and (D61), we can obtain

$$\begin{aligned}&G_2^{(Q)}(1,-1,-1) \nonumber \\&\quad \approx \sum _{i=1}^{p_{-1}} \sum _{j=1}^{p_{-1}} J_{Ai}^{(-1)} J_{Aj}^{(-1)} G^{(I)}(Q;0,0,A^{(-1)}_i,A^{(-1)}_j) \nonumber \\&\quad \approx \sum _{i=1}^{p_{-1}} \sum _{j=1}^{p_{-1}} J_{Ai}^{(-1)} J_{Aj}^{(-1)} G_{(-1,-1)}^{(Q)}(A^{(-1)}_i,A^{(-1)}_j),\nonumber \\ \end{aligned}$$
(D85)

where

$$\begin{aligned}&G_{(-1,-1)}^{(Q)}(V_1,V_2) \nonumber \\&\quad ={\left\{ \begin{array}{ll} (V_2-V_1)\left( -\frac{1}{2}\log (V_2-V_1)^2-\frac{\pi }{6}\right) +V_1 &{} (V_1 \ne V_2), \\ V_1 &{} (V_1=V_2).\\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(D86)

Similarly, from Eqs. (D62) and (D63),

$$\begin{aligned}&G_2^{(Q)}(1,-1,0) \nonumber \\&\quad \approx \sum _{i=1}^{p_{-1}} \sum _{j=1}^{p_{0}} J_{Ai}^{(-1)} J_{Aj}^{(0)} G^{(I)}(Q;0,0,A^{(-1)}_i,A^{(0)}_j) \nonumber \\&\quad \approx \sum _{i=1}^{p_{-1}} \sum _{j=1}^{p_{0}} J_{Ai}^{(-1)} J_{Aj}^{(0)} G_{-1,0}^{(Q)}(A_i^{(-1)},A^{(0)}_j), \end{aligned}$$
(D87)

where

$$\begin{aligned} G_{(-1,0)}^{(Q)}(V_1,V_2) = {\left\{ \begin{array}{ll} -\frac{1}{2}\log (V_2-V_1)^2 &{} (V_1 \ne V_2),\\ 0 &{} (V_1=V_2).\\ \end{array}\right. }.\nonumber \\ \end{aligned}$$
(D88)

Because the order of Eqs. (D64) and (D65) is \(\log (Q)/Q\),

$$\begin{aligned} G_2^{(Q)}(1,-1,2) \approx 0. \end{aligned}$$
(D89)

In addition, from Eq. (D59),

$$\begin{aligned} G_2^{(Q)}(1,m_1,m_2) \approx 0 \quad (m_1=0,1,m_2=0,1). \end{aligned}$$
(D90)

Note that in Eq. (D59), because \(h_1^{(1)}=-h_1^{(2)}\), the terms of \(\log (Q)\) approach zero for \(Q>>1\) by cancelling each other out.

When \(\beta \) is an integer and \(\beta \ne 1\) The terms of \(\log (Q)\) in Eq. (D59) approach zero for \(Q>>1\) by cancelling each other out because \(h_1^{(1)}=-h_1^{(2)}\). We use the following result:

$$\begin{aligned} G_2^{(I)}(Q;\alpha _1,\alpha _2,V_1,V_2) \approx 0. \end{aligned}$$
(D91)

Therefore,

$$\begin{aligned} G_2^{(Q)}(\beta ,m_1,m_2) \approx 0. \end{aligned}$$
(D92)

We summarize \(G_2^{(Q)}\) as follows:

$$\begin{aligned}&G_2^{(Q)}(\beta ,m_1,m_2) \nonumber \\&\quad \approx \sum _{i=1}^{p_{m_1}} \sum _{j=1}^{p_{m_2}} J_{Ai}^{(m_1)} J_{Aj}^{(m_2)}G_2^{(I;Q)}(\beta ,m_1,m_2,A^{(m_1)}_i,A^{(m_2)}_j),\nonumber \\ \end{aligned}$$
(D93)

where

$$\begin{aligned}&G_2^{(I;Q)}(\beta ,m_1,m_2,A^{(m_1)}_i,A^{(m_2)}_j) \nonumber \\&\quad = {\left\{ \begin{array}{ll} {(2\beta +m_1+m_2 \ne 1, 0,-1, A^{(m_1)}_i \ne A^{(m_2)}_j)} \\ \frac{\varGamma (2\beta +m_1+m_2-1)\varGamma (2-\beta -m_{s})}{(1-\beta -m_{s}) \varGamma (\beta +m_{k})} (A_{q}-A_{r})^{1-2\beta -m_1-m_2} \\ {(\beta \hbox { is noninteger }2\beta +m_1+m_2=-1,1)} \\ \frac{(-1)^{1-2\beta -m_1-m_2} \varGamma (2-\beta -m_s)}{(1-\beta -m_s)\varGamma (\beta +m_k)} (A_{q}-A_{r})^{1-2\beta -m_1-m_2} \times \\ \frac{(-\log (A_{q}-A_{r})+\psi (2-2\beta -m_1-m_2)-\psi (1-\beta -m_s))}{\varGamma (2-2\beta -m_1-m_2)} \\ {(\beta \hbox { is noninteger, }2\beta +m_1+m_2=0)} \\ \frac{(-1)^{1-2\beta -m_1-m_2} \varGamma (2-\beta -m_s)}{(1-\beta -m_s)\varGamma (\beta +m_k)} (A_{q}-A_{r})^{1-2\beta -m_1-m_2} \times \\ \frac{(-\log (A_{q}-A_{r})+\psi (2-2\beta -m_1-m_2)-\psi (1-\beta -m_s))}{\varGamma (2-2\beta -m_1-m_2)} \\ +A_{r} \\ {(\beta =1, m_1=-1,m_2=-1, A^{(m_1)}_i \ne A^{(m_2)}_j)} \\ (A^{(m_2)}_j-A^{(m_1)}_i)(-\frac{1}{2}\log (A^{(m_2)}_j-A^{(m_1)}_i)^2-\frac{\pi }{6}) \\ +A^{(m_1)}_i \\ {(\beta =1, m_1=-1,m_2=-1, A^{(m_1)}_i = A^{(m_2)}_j)} \\ A^{(m_1)}_i \\ {(\beta =1, (m_1,m_2) \in \{(-1,0),(0,-1)\}, A^{(m_1)}_i \ne A^{(m_2)}_j)} \\ -\frac{1}{2}\log (A^{(m_2)}_j-A^{(m_1)}_i)^2 \\ {(\beta =1\hbox { and }[m_1=1\hbox { or }m_2=1])} \\ 0 \\ {(\beta =2,3,4, \ldots )} \\ 0\\ {(A^{(m_1)}_i = A^{(m_2)}_j, 2\beta +m_1+m_2 \ne 0)}\\ 0 \\ {(A^{(m_1)}_i = A^{(m_2)}_j, 2\beta +m_1+m_2=0, \beta \ne 1)}\\ A_{r}. \\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(D94)

Here, \(A_q=\max \{A^{(m_1)}_i,A^{(m_2)}_j\}\), \(A_r=\min \{A^{(m_1)}_i,A^{(m_2)}_j\}\), \(t=\arg \max _{\{u=1,2\}}\{A_{q_u}^{(m_u)}\}\), \(s=\arg \min _{\{u=1,2\}}\{A_{q_u}^{(m_u)}\}\), and \((q_1,q_2)=(i,j)\). The reason why we change the suffix is to avoid a constant of the integrations from becoming a complex number.

Consequently, \(U_1\) is obtained by

$$\begin{aligned}&U_1(\beta ,L) \approx \sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1} \sum _{i=1}^{p^{(A)}_{m_1}} \sum _{j=1}^{p^{(A)}_{m_2}} J_{A_i}^{(m_1)}J_{A_j}^{(m_2)} \nonumber \\&\quad \times \{ G_2^{(R;Q)}(1,\beta +m_1,\beta +m_2; A_i^{(m_1)},A_j^{(m_2)}) \nonumber \\&\quad +G_2^{(I;Q)}(\beta ,m_1,m_2,A_i^{(m_1)},A_j^{(m_2)}) \nonumber \\&\quad -G_2^{(I)}(1,\beta +m_1,\beta +m_2; A_i^{(m_1)},A_j^{(m_2)}) \}. \end{aligned}$$
(D95)

1.3 Appendix D.3: Calculation of \(U_2(\beta ,L)\)

\(U_2\) is defined by Eq. (D14) as

$$\begin{aligned} U_2(\beta ,L)=\sum ^{L(I+1)}_{t=LI+2}\frac{ Z(\beta )^2}{\check{\eta }^2} (\theta _3'(t)-\theta _2'(t))^2. \end{aligned}$$
(D96)

Substituting Eqs. (D6) and (D8) into Eq. (D96), we obtain

$$\begin{aligned}&U_2(\beta ,L) \nonumber \\&\quad =\sum ^{L(I+1)}_{t=LI+2}\frac{ Z(\beta )^2}{\check{\eta }^2} \Bigg (\sum ^{L-1}_{k=0}\theta (k+L(I+1)+1-t) \nonumber \\&\qquad -\sum ^{L(I+1)-t}_{k=0}\theta (k)\Bigg )^2. \end{aligned}$$
(D97)

Using a shifted index \(t'=t+LI+2\), \(U_2\) is written as

$$\begin{aligned}&U_2=\sum ^{L-2}_{t'=0}\frac{ Z(\beta )^2}{\check{\eta }^2} \Bigg (\sum ^{L-1}_{k=0}\theta (k+L-1-t') \nonumber \\&\quad -\sum ^{L-2-t'}_{k=0}\theta (k)\Bigg )^2. \end{aligned}$$
(D98)

Using the Euler–Maclaurin formula in Eq. (D19), we can obtain

$$\begin{aligned}&U_2 \approx \frac{ Z(\beta )^2}{\check{\eta }^2} \sum ^{L-3}_{t'=0} \left\{ \theta (L-1-t')+\frac{\theta (L-t')+\theta (2L-2-t')}{2} \right. \nonumber \\&\quad +\frac{\theta (2L-2-t')-\theta '(L-1-t')}{12} \nonumber \\&\quad +\int ^{L-1}_{1}\theta (k+L-1-t')\mathrm{d}k \nonumber \\&\quad - \theta (0)-\frac{\theta (1)+\theta (L-2-t)}{2} \nonumber \\&\quad - \left. \frac{\theta '(L-2-t)-\theta '(1)}{12}-\int ^{L-2-t}_{1} \theta (k) \mathrm{d}k \right\} ^2 \nonumber \\&\quad + u_2^{(0)}(\beta )^2, \end{aligned}$$
(D99)

where \(u_2^{(0)}(\beta )^2\) is given by

$$\begin{aligned}&u_2^{(0)}(\beta ) = (1+d_{\beta })^{-\beta }+\frac{1}{2}((2+d_{\beta })^{-\beta }+(L+d_{\beta })^{-\beta }) \nonumber \\&\quad +(-\beta )\frac{1}{12}((L+d_{\beta })^{-\beta -1}-(2+d_{\beta })^{-\beta -1}) \nonumber \\&\quad +{\left\{ \begin{array}{ll} \frac{1}{-\beta +1}((L+d_{\beta })^{-\beta +1}-(2+d_{\beta })^{-\beta +1} &{} {(\beta \ne 1)}, \\ \log (L+d_{\beta })-\log (2+d_{\beta }) &{} {(\beta =1)}.\\ \end{array}\right. }\nonumber \\ \end{aligned}$$
(D100)

Here, \(u_2^{(0)}(\beta )\) corresponds to the term of \(t'=L-2\) in Eq. (D98). We separated and directly calculated this term to improve the accuracy.

Substituting Eq. (D3) into \(\theta (t')\) and performing some calculations, for \(\beta >0\) and \(\beta \ne 1\), we obtain

$$\begin{aligned} U_2\approx & {} \sum ^{L-3}_{t=0}\left\{ B_0+ \sum ^{p_B^{(-1)}}_{k=1}J^{(-1)}_{B,k} (-t+B^{(-1)}_k)^{-(\beta -1)} \right. \nonumber \\&+\sum ^{p_B^{(0)}}_{k=1}J^{(0)}_{B,k} ((-t+B^{(0)}_k)^{-\beta } \nonumber \\&+\left. \sum ^{p_B^{(+1)}}_{k=1}J^{(+1)}_{B,k}(-t+B^{(+1)}_k)^{-(\beta +1)}\right\} ^2 \nonumber \\&+u_2^{(0)}(\beta )^2, \end{aligned}$$
(D101)

and, for \(\beta =1\),

$$\begin{aligned} U_2\approx & {} \sum ^{L-3}_{t=0}\left\{ B_0+ \sum ^{p_B^{(-1)}}_{k=1}J^{(-1)}_{B,k} \log (-t+B^{(-1)}_k) \right. \nonumber \\&+ \sum ^{p_B^{(0)}}_{k=1}J^{(0)}_{B,k} ((-t+B^{(0)}_k)^{-\beta } \nonumber \\&\left. + \sum ^{p_B^{(+1)}}_{k=1}J^{+1}_{B,k}(-t+B^{(+1)}_k)^{-(\beta +1)}\right\} ^2 \nonumber \\&+u_2^{(0)}(\beta )^2. \end{aligned}$$
(D102)

By combining these results, \(U_2\) can be written as

$$\begin{aligned} U_2\approx & {} \sum ^{L-3}_{t=0}\left\{ B_0+\sum ^{+1}_{m=-1} \sum _{k=1}^{p^{(m)}_B}J^{(m)}_{B,k} f_A(-t,\beta +m,B^{(m)}_k) \right\} ^2 \nonumber \\&+u_2^{(0)}(\beta )^2, \end{aligned}$$
(D103)

where

$$\begin{aligned}&B_1^{(-1)}=B_1^{(0)}=B_1^{(+1)}=2L-2-d_{\beta }, \end{aligned}$$
(D104)
$$\begin{aligned}&B_2^{(-1)}=B_2^{(0)}=B_2^{(+1)}=L+d_{\beta }, \end{aligned}$$
(D105)
$$\begin{aligned}&B_3^{(-1)}=B_4^{(0)}=B_3^{(+1)}=L-2+d_{\beta }, \end{aligned}$$
(D106)
$$\begin{aligned}&B_3^{(0)}=L-1+d_{\beta }, \end{aligned}$$
(D107)

\(p^{(-1)}_B=3\), \(p^{(0)}_B=4\), \(p^{(+1)}_B=3\),

$$\begin{aligned}&B_0 \nonumber \\&\quad = {\left\{ \begin{array}{ll} -a^{-\beta }-\frac{1}{2}(1+d_{\beta })^{-\beta }-\frac{\beta }{12}(1+d_{\beta })^{-\beta -1}+\frac{(d_{\beta }+1)^{-\beta +1}}{-\beta +1},\\ -a^{-\beta }-\frac{1}{2}(1+d_{\beta })^{-\beta }-\frac{\beta }{12}(1+d_{\beta })^{-\beta -1}+\log (d_{\beta }+1), \\ \end{array}\right. } \end{aligned}$$
(D108)
$$\begin{aligned}&J_{B,1}^{(-1)}= {\left\{ \begin{array}{ll} 1/(-\beta +1)&{} (\beta \ne 1), \\ 1 &{} (\beta = 1), \end{array}\right. } \end{aligned}$$
(D109)
$$\begin{aligned}&J_{B,2}^{(-1)}=J_{B,3}^{(-1)}= {\left\{ \begin{array}{ll} -1/(-\beta +1)&{} (\beta \ne 1), \\ -1 &{} (\beta = 1), \end{array}\right. } \end{aligned}$$
(D110)
$$\begin{aligned}&J_{B,1}^{(0)}=J_{B,3}^{(0)}=1/2, \end{aligned}$$
(D111)
$$\begin{aligned}&J_{B,2}^{(0)}=1, \end{aligned}$$
(D112)
$$\begin{aligned}&J_{B,4}^{(0)}=-1/2, \end{aligned}$$
(D113)

and

$$\begin{aligned}&J_{B,1}^{(+1)}=-\beta /12,\end{aligned}$$
(D114)
$$\begin{aligned}&J_{B,2}^{(+1)}=J_{B,2}^{(+1)}=\beta /12. \end{aligned}$$
(D115)

Expanding the squared term gives

$$\begin{aligned}&U_2 \nonumber \\&\quad \approx \sum ^{L-3}_{t'=0}\left\{ B_0+\sum ^{+1}_{m=-1} \sum _{k=1}^{p_m}J^{(m)}_{B,k} f_A(t,\alpha +m,B^{(m)}_k) \right\} ^2 \nonumber \\&\quad =B_0^2(L-2)+2B_0\sum ^{+1}_{m=-1}U^{(1)}_2(-t;\beta ,m) \nonumber \\&\qquad +\sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1}U^{(2)}_2(t;\beta ,m_1,m_2) \nonumber \\&\qquad +u_2^{(0)}(\beta )^2, \end{aligned}$$
(D116)

where

$$\begin{aligned}&U^{(1)}_2(t;\beta ,m_1)= \sum _{i=1}^{p^{(B)}_{m_1}} J_{Bi}^{(m_1)} \sum ^{L-2}_{t=0}f_A(-t,\beta +m_i,B^{(m)}_i)\nonumber \\ \end{aligned}$$
(D117)

and

$$\begin{aligned}&U^{(2)}_2(t;\beta ,m_1,m_2) \nonumber \\&\quad =\sum _{i=1}^{p^{(B)}_{m_1}} \sum _{j=1}^{p^{(B)}_{m_2}} J_{Bi}^{(m_1)} J_{Bj}^{(m_2)} \nonumber \\&\qquad \sum ^{L-2}_{t=0}f_A(-t,\beta +m_i,B^{(m)}_i)f_A(-t,\beta +m_j,B^{(m)}_j).\nonumber \\ \end{aligned}$$
(D118)

Using the Euler–Maclaurin formula in Eq. (D19), we can approximate the sum in \(U^{(1)}_2(t;\beta ,m_1,m_2))\) for \(L \ge 3\) as

$$\begin{aligned}&\sum ^{L-3}_{t=0}f_A(t,\alpha _1,V_1) \nonumber \\&\quad \approx G_1^{(R)}(3-L,\max \{-1,3-L\};\alpha _1,V_1) \nonumber \\&\qquad +\int ^{\max \{L-3,1\}}_1 (-t+V_1)^{-\alpha _1} \mathrm{d}t \nonumber \\&\quad \approx G_1^{(R)}(3-L,\max \{-1,3-L\},;\alpha _1,V_1) \nonumber \\&\qquad -G_1^{(I)}(\min \{-L+3,-1\};\alpha _1,V_1) \nonumber \\&\qquad +G_1^{(I)}(-1;\alpha _1,V_1), \end{aligned}$$
(D119)

where \(G_1^{(R)}(x_1,x_2;\alpha _1,V_1)\), for \(\alpha _1 \ne 1\) and \(\alpha _2 \ne 1\), is given by

$$\begin{aligned}&G_1^{(R)}(x_1,x_2;\alpha _1,V_1)=(V_1)^{-\alpha _1} \nonumber \\&\quad +\frac{1}{2}\{(V_1+x_1)^{-\alpha _1}+(V_1+x_2)^{-\alpha _1}\} \nonumber \\&\quad -\frac{1}{12}\{(-\alpha _1)(V_1+x_2)^{-\alpha _1-1} \nonumber \\&\quad -(-\alpha _1)(V_1+x_1)^{-\alpha _1-1}\}. \end{aligned}$$
(D120)

And, for \(x_1=0\) and \(x_2=0\), we define

$$\begin{aligned}&G_1^{(R)}(x_1,x_2;\alpha _1,V_1)=V_1^{-\alpha _1}. \end{aligned}$$
(D121)

For \(\alpha _1 = 0\), the corresponding term is also written as

$$\begin{aligned}&G_1^{(R)}(x_1,x_2;\alpha _1,V_1) \nonumber \\&\quad =\log (V_1)+ \frac{1}{2}\{\log (V_1+x_1)+\log (V_1+x_2)\} \nonumber \\&\qquad -\frac{1}{12}\{(V_1+x_2)^{-1} \nonumber \\&\qquad -(V_1+x_1)^{-1}\}. \end{aligned}$$
(D122)

And, for \(x_1=0\) and \(x_2=0\), we define

$$\begin{aligned}&G_1^{(R)}(x_1,x_2;\alpha _1,V_1)=\log (V_1). \end{aligned}$$
(D123)

In addition, \(G_1^{(I)}(x;\alpha ,V)\) is calculated as

$$\begin{aligned}&G_1^{(I)}(x;\alpha ,V)\nonumber \\&\quad = {\left\{ \begin{array}{ll} {(\alpha \ne 0, \alpha \ne 1)} \\ \int (x+V)^{-\alpha } \mathrm{d}x = \frac{1}{-\alpha +1} (x+V)^{-\alpha +1} \\ {(\alpha =1)} \\ \int (x+V)^{-1} \mathrm{d}x= \log (x+V) \\ {(\alpha =0)} \\ \int \log (x+V) \mathrm{d}x= (x+V)\log (x+V)-x. \\ \end{array}\right. } \end{aligned}$$
(D124)

Here, we omit a constant of integration.

Next, we calculate \(U^{(2)}_2(t;\beta ,m_1,m_2))\) in Eq. (D116). Using the Euler–Maclaurin formula in Eq. (D19), we can approximate the sum in \(U^{(2)}_2(t;\beta ,m_1,m_2))\) as

$$\begin{aligned}&\sum ^{L-3}_{t=0}f_A(-t,\alpha _1,V_1)f_A(-t,\alpha _2,V_2) \end{aligned}$$
(D125)
$$\begin{aligned}&\quad \approx G_2^{(R)}(3-L,\max \{-1,3-L\};\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\qquad +\int ^{\max \{L-3,1\}}_1 (-t+V_1)^{-\alpha _1}(-t+V_2)^{-\alpha _2} \mathrm{d}t \nonumber \\&\quad \approx G_2^{(R)}(3-L,\max \{-1,3-L\},;\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\qquad -G_2^{(I)}(\min \{3-L,1\};\alpha _1,\alpha _2,V_1,V_2) \nonumber \\&\qquad +G_2^{(I)}(-1;\alpha _1,\alpha _2,V_1,V_2). \end{aligned}$$
(D126)

Therefore, substituting Eqs. (D120), (D124), and D126 into Eq. (D116), for \(L>3\), we have

$$\begin{aligned}&U_2 \approx (L-2)B_0^2 \nonumber \\&\quad +2B_0\sum ^{+1}_{m=-1}\sum _{i=1}^{p^{(B)}_{m}} J_{Bi}^{(m)} \{ G_1^{(R)}(-1,3-L,\beta +m,B_i^{(m)}) \nonumber \\&\quad -G_1^{(I)}(-L+3,\beta +m,B_i^{(m)}) \nonumber \\&\quad +G_1^{(I)}(-1,\beta +m,B_i^{(m)}) \} \nonumber \\&\quad +\sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1} \sum _{i=1}^{p^{(B)}_{m_1}} \sum _{j=1}^{p^{(B)}_{m_2}} J_{Bi}^{(m_1)}J_{Bj}^{(m_2)} \{ \nonumber \\&\quad G_2^{(R)}(3-L,-1,\beta +m_1,\beta +m_2; B_i^{(m_1)},B_j^{(m_2)}) \nonumber \\&\quad -G_2^{(I)}(3-L,\beta +m_1,\beta +m_2; B_i^{(m_1)},B_j^{(m_2)}) \nonumber \\&\quad +G_2^{(I)}(-1,\beta +m_1,\beta +m_2; B_i^{(m_1)},B_j^{(m_2)}) \} \nonumber \\&\quad + u^{(0)}_2(\beta )^2 \end{aligned}$$
(D127)

and, for \(L=3\), we have

$$\begin{aligned}&U_2 \approx (L-2)B_0^2 \nonumber \\&\quad +2B_0\sum ^{+1}_{m=-1}\sum _{i=1}^{p^{(B)}_{m}} J_{Bi}^{(m)} G_1^{(R)}(0,0,\beta +m,B_i^{(m)}) \nonumber \\&\quad +\sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1} \sum _{i=1}^{p^{(B)}_{m_1}} \sum _{j=1}^{p^{(B)}_{m_2}} J_{Bi}^{(m_1)}J_{Bj}^{(m_2)} \{ \nonumber \\&\quad G_2^{(R)}(0,0,\beta +m_1,\beta +m_2; B_i^{(m_1)},B_j^{(m_2)}) \} \nonumber \\&\quad + u^{(0)}_2(\beta )^2. \end{aligned}$$
(D128)

For \(L=2\), from Eq. (D124), we have

$$\begin{aligned}&U_2 \approx u^{(0)}_2(\beta )^2. \end{aligned}$$
(D129)

Note that, because we cannot use the integral approximation method, we calculated directly from the sums for \(L=2\).

1.4 Appendix D.4: Calculation of \(U_3(\beta ,L)\)

\(U_3\) is defined by Eq. (D15) as

$$\begin{aligned} U_3= \frac{ Z(\beta )^2}{\check{\eta }^2} \sum ^{L(I+2)}_{t=L(I+1)+1}(\theta _4'(t))^2. \end{aligned}$$
(D130)

Substituting Eqs. (D6) and (D8) into Eq. (D130) gives

$$\begin{aligned} U_3= & {} \sum ^{L(I+2)}_{t=L(I+1)+1}\sum ^{L-(t-L(I+1))}_{k=0}(k+d_{\beta })^{-\beta }. \end{aligned}$$
(D131)

Using a shifted index \(t'=t-L(I+1)-1\), we can write

$$\begin{aligned} U_3= & {} \sum ^{L-1}_{t'=0}\left( \sum ^{L-(1+t')}_{k=0}(k+d_{\beta })^{-\beta }\right) ^2. \end{aligned}$$
(D132)

Using the Euler–Maclaurin formula in Eq. (D19), we can obtain

$$\begin{aligned}&U_3 \approx \frac{ Z(\beta )^2}{\check{\eta }^2} \sum ^{L-2}_{t'=0} \left\{ \theta (0)+\frac{\theta (1)+\theta (L-1-t))}{2} \right. \nonumber \\&\quad +\left. \frac{\theta '(L-1-t)-\theta '(1)}{12} +\int ^{L-1-t}_{1}\theta (k)\mathrm{d}k \right\} ^2 \nonumber \\&\quad +\theta (0)^2. \end{aligned}$$
(D133)

Here, because we cannot use the integral approximation method, we calculated directly from the sums for \(t'=L-1\).

Substituting Eq. (D3) into \(\theta (t')\), for \(\beta >0\) and \(\beta \ne 1\), we get

$$\begin{aligned} U_3\approx & {} \sum ^{L-2}_{t=0}\left\{ C_0+ \sum ^{p_C^{(-1)}}_{k=1}J^{(-1)}_{C,k} (-t+C^{(-1)}_k)^{-(\beta -1)} \right. \nonumber \\&+ \sum ^{p_C^{(0)}}_{k=1}J^{(0)}_{C,k} ((-t+C^{(0)}_k)^{-\beta } \nonumber \\&\left. + \sum ^{p_C^{(+1)}}_{k=1}J^{(+1)}_{C,k}(-t+C^{(+1)}_k)^{-(\beta +1)}\right\} ^2 \nonumber \\&+d_{\beta }^{-2\beta }, \end{aligned}$$
(D134)

and, for \(\beta =1\), we get

$$\begin{aligned} U_3\approx & {} \sum ^{L-2}_{t=0}\left\{ C_0+ \sum ^{p_C^{(-1)}}_{k=1}J^{(-1)}_{C,k} \log (-t+C^{(-1)}_k) \right. \nonumber \\&+ \sum ^{p_C^{(0)}}_{k=1}J^{(0)}_{C,k} ((-t+C^{(0)}_k)^{-\beta } \nonumber \\&\left. + \sum ^{p_C^{(+1)}}_{k=1}J^{+1}_{C,k}(-t+C^{(+1)}_k)^{-(\beta +1)}\right\} ^2 \nonumber \\&+d_{\beta }^{-2\beta }. \end{aligned}$$
(D135)

Combining these two equations gives

$$\begin{aligned}&U_3 \approx \sum ^{L-2}_{t=0}\left\{ C_0+\sum ^{+1}_{m=-1} \sum _{k=1}^{p^{(m)}_C}J^{(m)}_{C,k} f_A(-t,\beta +m,C^{(m)}_k) \right\} ^2 \nonumber \\&\quad +d_{\beta }^{-2\beta }, \end{aligned}$$
(D136)

where

$$\begin{aligned}&C_1^{(-1)}=C_1^{(0)}=C_1^{(-1)}=L-1+a, \end{aligned}$$
(D137)

\(p^{(-1)}_C=1\), \(p^{(0)}_C=1\), \(p^{(+1)}_C=1\),

$$\begin{aligned}&C_0 \nonumber \\&\quad = {\left\{ \begin{array}{ll} d_{\beta }^{-\beta }+\frac{1}{2}(1+d_{\beta })^{-\beta }+\frac{\beta }{12}(1+d_{\beta })^{-\beta -1}-\frac{(d_{\beta }+1)^{-\beta +1}}{-\beta +1},\\ d_{\beta }^{-\beta }+\frac{1}{2}(1+d_{\beta })^{-\beta }+\frac{\beta }{12}(1+d_{\beta })^{-\beta -1}-\log (d_{\beta }+1), \\ \end{array}\right. } \end{aligned}$$
(D138)
$$\begin{aligned}&J_{C,1}^{(-1)}= {\left\{ \begin{array}{ll} 1/(-\beta +1)&{} (\beta \ne 1), \\ 1 &{} (\beta = 1), \end{array}\right. } \end{aligned}$$
(D139)
$$\begin{aligned}&J_{C,1}^{(0)}=1/2, \end{aligned}$$
(D140)

and

$$\begin{aligned}&J_{C,1}^{(+1)}=-\beta /12. \end{aligned}$$
(D141)

Expanding the squared term gives

$$\begin{aligned}&U_3 \approx \sum ^{L-2}_{t'=0}\left\{ C_0+\sum ^{+1}_{m=-1} \sum _{k=1}^{p_m}J^{(m)}_{B,k} f_A(t,\alpha +m,B^{(m)}_k) \right\} ^2 \nonumber \\&\quad =C_0^2+2C_0\sum ^{+1}_{m=-1}U^{(1)}_3(-t;\beta ,m) \nonumber \\&\qquad +\sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1}U^{(2)}_3(t;\beta ,m_1,m_2) \nonumber \\&\qquad +d_{\beta }^{-2\beta }, \end{aligned}$$
(D142)

where

$$\begin{aligned}&U^{(1)}_3(t;\beta ,m) \nonumber \\&\quad = \sum _{i=1}^{p^{(C)}_{m}} J_{Ci}^{(m)} \sum ^{L-2}_{t=0}f_A(-t,\beta +m,C^{(m)}_i) \end{aligned}$$
(D143)

and

$$\begin{aligned}&U^{(2)}_3(t;\beta ,m_1,m_2) \nonumber \\&\quad = \sum _{i=1}^{p^{(C)}_{m_1}} \sum _{j=1}^{p^{(C)}_{m_2}} J_{Ci}^{(m_1)} J_{Cj}^{(m_2)} \nonumber \\&\qquad \sum ^{L-2}_{t=0}f_A(-t,\beta +m_i,C^{(m)}_i)f_A(-t,\beta +m_j,C^{(m)}_j). \end{aligned}$$
(D144)

Consequently, as with \(U_2\), for \(L>2\), \(U_3\) is also calculated by

$$\begin{aligned}&U_3 \approx (L-1)C_0^2 \nonumber \\&\quad +2C_0\sum ^{+1}_{m=-1}\sum _{i=1}^{p^{(C)}_{m}} J_{C_i}^{(m)} \{ G_1^{(R)}(-1,2-L,\beta +m,C_i^{(m)}) \nonumber \\&\quad -G_1^{(I)}(-L+2,\beta +m,C_i^{(m)}) \nonumber \\&\quad +G_1^{(I)}(-1,\beta +m,C_i^{(m)}) \} \nonumber \\&\quad +\sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1} \sum _{i=1}^{p^{(C)}_{m_1}} \sum _{j=1}^{p^{(C)}_{m_2}} J_{C_i}^{(m_1)}J_{C_j}^{(m_2)} \{ \nonumber \\&\quad G_2^{(R)}(2-L,-1,\beta +m_1,\beta +m_2; B_i^{(m_1)},B_j^{(m_2)}) \nonumber \\&\quad -G_2^{(I)}(2-L,\beta +m_1,\beta +m_2; C_i^{(m_1)},C_jj^{(m_2)}) \nonumber \\&\quad +G_2^{(I)}(-1,\beta +m_1,\beta +m_2; C_i^{(m_1)},C_j^{(m_2)}) \}\nonumber \\&\quad +d_{\beta }^{-2\beta }, \end{aligned}$$
(D145)

and, for \(L=2\),

$$\begin{aligned}&U_3 \approx (L-1)C_0^2 \nonumber \\&\quad +2C_0\sum ^{+1}_{m=-1}\sum _{i=1}^{p^{(C)}_{m}} J_{C_i}^{(m)} G_1^{(R)}(0,0,\beta +m,C_i^{(m)}) \nonumber \\&\quad +\sum ^{+1}_{m_1=-1}\sum ^{+1}_{m_2=-1} \sum _{i=1}^{p^{(C)}_{m_1}} \sum _{j=1}^{p^{(C)}_{m_2}} J_{C_i}^{(m_1)}J_{C_j}^{(m_2)} \{ \nonumber \\&\quad G_2^{(R)}(0,0,\beta +m_1,\beta +m_2; C_i^{(m_1)},C_j^{(m_2)}) \} \nonumber \\ \nonumber \\&\quad +d_{\beta }^{-2\beta }. \end{aligned}$$
(D146)

1.5 Appendix D.5: Calculation of \(V[R_j^{(L)}]\)

We can obtain \(V[R_j^{(L)}]\) by substituting \(U_1(\beta ,L)\) (Eq. (D95)), \(U_2(\beta ,L)\) (Eq. (D127)), and \(U_3(\beta ,L)\) (Eq. (D145)) into Eq. (D12) approximately.

Appendix E: Asymptotic behavior of \(V[R_j^{(L)}]\) in the case of the power-law forgetting process for \(L>>1\)

In this section, we calculate the asymptotic behavior of \(V[R_j^{(L)}]\) for \(L>>1\). Because \(V[R_j^{(L)}]\) is decomposed into \(U_1(\beta ,L)\), \(U_2(\beta ,L)\), and \(U_3(\beta ,L)\) (Eq. (D12)), we calculate the asymptotic behaviors of \(U_1(\beta ,L)\) (Eq. (D95)), \(U_2(\beta ,L)\) (Eq. (D127)), and \(U_3(\beta ,L)\) (Eq. (D145)), respectively.

1.1 Appendix E.1: Asymptotic behavior of \(U_1(\beta ,L)\) for \(L>>1\)

The dominant terms of Eq. (D95) are the cases of \(m_1=-1\) and \(m_2=-1\), namely,

$$\begin{aligned} \sum ^{p^{(A)}_{(-1)}}_{i=1} \sum ^{p^{(A)}_{(-1)}}_{j=1} J^{(-1)}_{A_i}J^{(-1)}_{A_j} G_2^{(I;Q)}(\beta ,-1,-1,A_i^{(-1)},A_j^{(-1)})\nonumber \\ \end{aligned}$$
(E1)

and

$$\begin{aligned} \sum ^{p^{(A)}_{(-1)}}_{i=1} \sum ^{p^{(A)}_{(-1)}}_{j=1} J^{(-1)}_{A_i}J^{(-1)}_{A_j} G_2^{(I)}(1,\beta -1,\beta -1,A_i^{(-1)},A_j^{(-1}).\nonumber \\ \end{aligned}$$
(E2)

Calculating these terms for \(L>>1\), we can write

$$\begin{aligned}&U_1(\beta ,L) \approx u_1^{(1)}(\beta )L^{3-2\beta }, \end{aligned}$$
(E3)

where, for \(\beta \ne 1\) and \(\beta >0\),

$$\begin{aligned}&u_1^{(1)}(\beta )=\frac{1}{(2-\beta )(1-\beta )^2} \nonumber \\&\quad \times \biggl \{ 4 {}_2F_1(\beta -1,2-\beta ,3-\beta ,-1) -\frac{(2-\beta )(4+2^{3-2\beta })}{3-2\beta } \nonumber \\&\quad +2 \frac{\varGamma (3-\beta )}{\varGamma (\beta -1)}(2^{3-2\beta }q_1(\beta ,L)-4q_2(\beta ,L)) \biggr \} \end{aligned}$$
(E4)

and, for \(\beta =1\),

$$\begin{aligned}&u_1^{(1)}(\beta ) \nonumber \\&\quad =-\frac{4\pi ^2}{6}-4\psi (2)-4\log (2)^2-2\log (-1)^2. \end{aligned}$$
(E5)

In addition,

$$\begin{aligned}&q_1(\beta ,L) \nonumber \\&\quad ={\left\{ \begin{array}{ll} \frac{-\log (2)+\psi (3-2\beta )+\psi (2-\beta )}{\varGamma (4-2\beta )} &{} {(\beta =0.5)}, \\ \varGamma (2\beta -3) &{} {(\beta \ne 0.5)},\\ \end{array}\right. } \end{aligned}$$
(E6)

and

$$\begin{aligned}&q_2(\beta ,L) \nonumber \\&\quad ={\left\{ \begin{array}{ll} \frac{(\psi (3-2 \beta )+\psi (2-\beta ))}{\varGamma (4-2\beta )} &{} {(\beta =0.5)}, \\ \varGamma (2 \beta -3) &{} {(\beta \ne 0.5)}. \\ \end{array}\right. } \end{aligned}$$
(E7)

Here, for the calculations, we use the following approximation formulas of the hypergeometric function [43]:

$$\begin{aligned} {}_2F_1(a,b,c;x) \rightarrow 1 \quad (x \rightarrow 0), \end{aligned}$$
(E8)

in Eqs. (D69), (D70), and (D71) and for the logarithmic function of Eq. (D84). In addition, we replace \(L+\mathrm{constant}\) with L.

1.2 Appendix E.2: Asymptotic behavior of \(U_2(\beta ,L)\) for \(L>>1\)

As with \(U_1(\beta ,L)\), we can calculate the asymptotic behavior of \(U_2(\beta ,L)\). We focus on terms of higher order than O(L) in Eq. (D127). The highest order terms are

$$\begin{aligned} \sum ^{p^{(B)}_{(-1)}}_{i=1} \sum ^{p^{(B)}_{(-1)}}_{j=1} J^{(-1)}_{B_i}J^{(-1)}_{B_j} G_2^{(I;Q)}(3-L,\beta -1,\beta -1,B_i^{(-1)},B_j^{(-1)})\nonumber \\ \end{aligned}$$
(E9)

and

$$\begin{aligned} \sum ^{p^{(B)}_{(-1)}}_{i=1} \sum ^{p^{(B)}_{(-1)}}_{j=1} J^{(-1)}_{B_i}J^{(-1)}_{B_j} G_2^{(I)}(-1,\beta -1,\beta -1,B_i^{(-1)},B_j^{(-1)}).\nonumber \\ \end{aligned}$$
(E10)

The second highest order terms are

$$\begin{aligned} 2B_0 \sum ^{p^{(B)}_{(-1)}}_{i=1} J^{(-1)}_{B_i} G_1^{(I;Q)}(3-L,\beta -1,B_i^{(-1)}) \end{aligned}$$
(E11)

and

$$\begin{aligned} 2B_0 \sum ^{p^{(B)}_{(-1)}}_{i=1} J^{(-1)}_{B_i} G_1^{(I;Q)}(-1,\beta -1,B_i^{(-1)}). \end{aligned}$$
(E12)

The term of O(L) is

$$\begin{aligned} (L-1)B_0^2. \end{aligned}$$
(E13)

Calculating these terms, we can obtain

$$\begin{aligned}&U_2(\beta ,L) \nonumber \\&\quad \approx {\left\{ \begin{array}{ll} u^{(2)}_1(\beta )L^{3-2\beta } u^{(2)}_2(\beta )L^{2-\beta }+u^{(2)}_3(\beta )L &{} {(0<\beta <1)}, \\ u^{(2)}_a \log (L)^2 L + u^{(2)}_b \log (L)L+u^{(2)}_cL &{}{(\beta =1)}, \\ u^{(2)}_3(\beta )L &{} {(\beta >1)}, \end{array}\right. } \end{aligned}$$
(E14)

where

$$\begin{aligned}&u^{(2)}_1(\beta )=\frac{-4 {}_2F_1(\beta -1,2-\beta ,3-\beta ,-1)}{(2-\beta )(1-\beta )^2} \nonumber \\&\quad +\frac{(2^{3-2\beta }+3)}{(3-2\beta )(1-\beta )^2}, \end{aligned}$$
(E15)
$$\begin{aligned}&u^{(2)}_2(\beta )=2 B_0 \frac{2^{2-\beta }-3}{(2-\beta )(1-\beta )}, \end{aligned}$$
(E16)
$$\begin{aligned}&u^{(2)}_3(\beta )= B_0^2, \end{aligned}$$
(E17)
$$\begin{aligned}&u^{(2)}_a=1, \end{aligned}$$
(E18)
$$\begin{aligned}&u^{(2)}_b=-4\log (2)-2-2B_0, \end{aligned}$$
(E19)
$$\begin{aligned}&u^{(2)}_c= 2+4\psi (2)-4\psi (1) \nonumber \\&\quad +\log (2)(4+2\log (2)-4\log (-1)+4B_0).\nonumber \\ \end{aligned}$$
(E20)

Here, for the calculations, we use these approximation formulas of the hypergeometric functions in Eqs. (E8), (D69), (D70), and (D71) and in the logarithmic function of Eq. (D84). In addition, we replace \(L+ \mathrm{constant}\) with L.

1.3 Appendix E.3: Asymptotic behavior of \(U_3(\beta ,L)\) for \(L>>1\)

As with \(U_2(\beta ,L)\), we can calculate the asymptotic behavior of \(U_2(\beta ,L)\). We focus on terms of higher order than O(L) in Eq. (D145). The highest order terms are

$$\begin{aligned} \sum ^{p^{(C)}_{(-1)}}_{i=1} \sum ^{p^{(C)}_{(-1)}}_{j=1} J^{(-1)}_{C_i}J^{(-1)}_{C_j} G_2^{(I;Q)}(2-L,\beta -1,\beta -1,C_i^{(-1)},C_j^{(-1)})\nonumber \\ \end{aligned}$$
(E21)

and

$$\begin{aligned} \sum ^{p^{(C)}_{(-1)}}_{i=1} \sum ^{p^{(C)}_{(-1)}}_{j=1} J^{(-1)}_{C_i}J^{(-1)}_{C_j} G_2^{(I)}(-1,\beta -1,\beta -1,C_i^{(-1)},C_j^{(-1)}).\nonumber \\ \end{aligned}$$
(E22)

The second highest order terms are

$$\begin{aligned} 2C_0 \sum ^{p^{(C)}_{(-1)}}_{i=1} J^{(-1)}_{C_i} G_1^{(I;Q)}(2-L,\beta -1,C_i^{(-1)}) \end{aligned}$$
(E23)

and

$$\begin{aligned} 2C_0 \sum ^{p^{(C)}_{(-1)}}_{i=1} J^{(-1)}_{C_i} G_1^{(I;Q)}(-1,\beta -1,C_i^{(-1)}). \end{aligned}$$
(E24)

The term of O(L) is

$$\begin{aligned} (L-1)C_0^2. \end{aligned}$$
(E25)

Calculating these terms, we can obtain

$$\begin{aligned}&U_3(\beta ,L) \nonumber \\&\quad \approx {\left\{ \begin{array}{ll} u^{(3)}_1(\beta )L^{3-2\beta } u^{(3)}_2(\beta )L^{2-\beta }+u^{(3)}_3(\beta )L &{} {(0<\beta <1)}, \\ u^{(3)}_a \log (L)^2 L + u^{(3)}_b \log (L)L+u^{(3)}_cL &{} {(\beta =1)},\\ u^{(3)}_3(\beta )L &{} {(\beta >1)}, \end{array}\right. }\nonumber \\ \end{aligned}$$
(E26)

where

$$\begin{aligned}&u^{(3)}_1(\beta )=\frac{1}{(1-\beta )^2 (3-2\beta )}, \end{aligned}$$
(E27)
$$\begin{aligned}&u^{(3)}_2(\beta )=2 C_0 \frac{2-\beta }{1-\beta }, \end{aligned}$$
(E28)
$$\begin{aligned}&u^{(3)}_3(\beta )= C_0^2, \end{aligned}$$
(E29)
$$\begin{aligned}&u^{(3)}_a=1, \end{aligned}$$
(E30)
$$\begin{aligned}&u^{(3)}_b=(-2+2C_0), \end{aligned}$$
(E31)
$$\begin{aligned}&u^{(3)}_c= -1+C_0^2+2C_0. \end{aligned}$$
(E32)

Here, for the calculations, we use the approximation formulas of the hypergeometric functions in Eqs. (E8), (D69), (D70), and (D71) and for the logarithmic function in Eq. (D84). In addition, we replace \(L+ \mathrm{constant}\) with L.

1.4 Appendix E.4: Asymptotic behavior of \(V[R_j^{(L)}]\) for \(L>>1\)

Substituting Eqs. (E3), (E14), and (E26) into Eq. (D12), we can obtain

$$\begin{aligned}&V[\delta R_j^{(L)}] \approx \frac{\check{\eta }^2}{Z(\beta )^2} \nonumber \\&\quad \times {\left\{ \begin{array}{ll} u_1(\beta )L^{1-2\beta }+u_2(\beta )L^{-\beta }+u_3(\beta )L^{-1} &{} {(0<\beta <1)}, \\ u_a \log (L)^2 L^{-1} + u_b \log (L) L^{-1}+u_c L^{-1} &{} {(\beta =1)}, \\ u_3(\beta )L^{-1} &{} {(\beta >1)}, \end{array}\right. } \end{aligned}$$
(E33)
$$\begin{aligned}&u_1(\beta )=u_1^{(1)}(\beta )+u_1^{(2)}(\beta )+u_1^{(3)}(\beta ), \end{aligned}$$
(E34)
$$\begin{aligned}&u_2(\beta )=u_2^{(2)}(\beta )+u_2^{(3)}(\beta ), \end{aligned}$$
(E35)
$$\begin{aligned}&u_3(\beta )= u_3^{(2)}(\beta )+u_3^{(3)}(\beta ), \end{aligned}$$
(E36)
$$\begin{aligned}&u_a=1, \end{aligned}$$
(E37)
$$\begin{aligned}&u_b=(-2+2C_0), \end{aligned}$$
(E38)
$$\begin{aligned}&u_c= -1+C_0^2+2C_0. \end{aligned}$$
(E39)

Consequently, the highest order term is obtained by

$$\begin{aligned} V[\delta R_j^{(L)}] \propto {\left\{ \begin{array}{ll} L^{1-2\beta } &{} {(0<\beta <1)}, \\ \log (L)^2 L^{-1} &{}{(\beta =1)}, \\ L^{-1} &{} {(\beta >1)}. \end{array}\right. } \end{aligned}$$
(E40)

Appendix F: Estimation of scaled total number of blogs, m(t), from the data

We estimate the scaled total number of blogs, m(t), using the moving median as follows:

  1. 1.

    We create a set S consisting of indexes of words such that \(\check{c}_j\) takes a value larger than the threshold \(\check{c}_j \ge 100\), where \(\check{c}_j=\sum ^{T}_{t=1}g_j(t)/T\).

  2. 2.

    We estimate m(t) as the median of \(\{g_j(t)/\check{c}_j:j \in S \}\) with respect to j.

  3. 3.

    For \(t=1,2,\ldots ,T\), we calculate m(t) using step 2.

Here, we use only words with \(\check{c}_j \ge 100\) in step 1 because we neglect the discreteness. In step 2, we apply the median because of its robustness to outliers.

Appendix G: MSD of the power-law forgetting process for \(\beta =0.5\) and \(L>>1\)

By rough approximate calculations, we show that the logarithmic diffusion can be derived by the power-law forgetting process given by Eq. (13) or Eq. (D2) for \(\beta =0.5\) and \(L>>1\). More detailed and accurate derivation can be found in Ref. [15].

The MSD of the model given by Eq. (D2) can be calculated as

$$\begin{aligned}&\langle (r(t+L)-r(t))^2 \rangle \nonumber \\&\quad =\langle (\sum ^{\infty }_{s=0} \theta (s) \eta (t+L-s) - \sum ^{\infty }_{s'=0}\theta (s') \eta (t-s'))^2 \rangle \nonumber \\&\quad =\Bigg \langle \Bigg \{\sum ^{-1}_{s=-L} \theta (s+L) \eta (t-s) +\sum ^{\infty }_{s=0} (\theta (s+L) \nonumber \\&\qquad - \theta (s) ) \eta (t-s) \Bigg \}^2 \Bigg \rangle . \end{aligned}$$
(G1)

Using \(\sum ^{B}_{t=A} \eta (t)^2/(B-A) \approx \hat{\eta }^2\) for \(B-A>>1\) and \(L>>1\),

$$\begin{aligned}&\langle (r(t+L)-r(t))^2 \rangle \nonumber \\&\quad \approx \left\langle \hat{\eta }^2 \left( \sum ^{-1}_{s=-L} \theta (s+L)^2 +\sum ^{\infty }_{s=0} (\theta (s+L) - \theta (s) )^2\right) \right\rangle \nonumber \\&\quad =\hat{\eta }^2 (S_1+S_2), \end{aligned}$$
(G2)
Fig. 5
figure 5

a Comparison of time-averaged MSD and ensemble MSD of the numerical simulation of model Eq. (G8). The black triangles are the time-averaged MSD \(<\overline{\delta ^2(L)}>_j=1/W \sum _{i=1}^{W} \sum _{t=1}^{T-L}((r_j(t+L)-r_j(t))^2)/(T-L)\), the red circle is the ensemble MSD \(<r_j'(L)>_{j}=1/W \sum ^{W}_{j=1}r_j'(L)^2\), where W is the number of ensembles and T is a observation period. The green solid line is the theoretical curve for the time-averaged MSD given by Eq. (G2) and the blue dashed line is for the ensemble MSD given by Eq. (G8). Here, \(T=1000\), \(W=10{,}000\) and \(\eta _j(t)\) are sampled from the normal distribution with the mean 0 and the standard deviation \(\check{\eta }=0.01\). b Corresponding figure in a semi-log plot. From these figures, it can be confirmed that the time-averaged MSD is different from the ensemble MSD. It can also be confirmed that the numerical simulations agree well with the theoretical curves

where for the case of \(\beta =0.5\) and \(L>>1\),

$$\begin{aligned} S_1\equiv & {} \sum ^{-1}_{s=-L} \theta (s+L)^2 \approx \int ^{-1}_{-L} \theta (s+L)^2 \mathrm{d}s \nonumber \\= & {} \int ^{-1}_{-L} \frac{1}{Z(\beta )^2}(s+L+d_\beta )^{-1}\mathrm{d}s \nonumber \\= & {} \frac{1}{Z(\beta )^2}\left[ \log (s+L+d_\beta ) \right] _{-L}^{-1} \nonumber \\\propto & {} \log (L) \quad (L>>1) \end{aligned}$$
(G3)

and

$$\begin{aligned}&S_2 \equiv \sum ^{\infty }_{s=0} (\theta (s+L) - \theta (s) )^2) \approx \int ^{\infty }_{0} (\theta (s+L) - \theta (s) )^2 \mathrm{d}s \nonumber \\&\quad = \int ^{\infty }_{0} \frac{1}{Z(\beta )^2}((s+L+d_\beta )^{-0.5}-(s+d_\beta )^{-0.5})^2\mathrm{d}s \nonumber \\&\quad = \frac{1}{Z(\beta )^2} \left[ \log \left( \frac{(s+d_\beta +L)(s+d_\beta )}{(\sqrt{\frac{s+d_\beta }{L}}+\sqrt{\frac{s+d_\beta }{L}+1})^4}\right) \right] _{0}^{\infty } \nonumber \\&\quad \propto 2\log (L)-\log (L) = \log (L) \quad (L>>1). \end{aligned}$$
(G4)

Therefore, for \(\beta =0.5\) we can obtain

$$\begin{aligned} \langle (r(t+L)-r(t))^2 \rangle \propto \log (L) \quad (L>>1). \end{aligned}$$
(G5)

This approximation is simple but very rough. Hence, it is not a good approximation for the time scale of blog data (\(L<1000\)). More accurate approximations that hold for small L are discussed in Ref. [15].

Note that the ensemble MSD of the power-law forgetting process on a finite time scale can be roughly calculated as follows:

$$\begin{aligned}&\langle r'(L)_j^2 \rangle _{j} =\left\langle \sum _{s=0}^{(L-1)} \theta (s) \cdot \eta _j(L-s) \right\rangle _{j} \end{aligned}$$
(G6)
$$\begin{aligned}&\approx \check{\eta }^2 \sum _{s=0}^{L-1} \theta (s)^2=\check{\eta }^2 S_1, \end{aligned}$$
(G7)

where \(\langle A_j(t) \rangle _j= \sum ^{W}_{j}A_j(t)/W\) is the ensemble average for \(W>>1\) and we defined the power-law forgetting process for a finite time scale as

$$\begin{aligned} r_j'(t)=\sum _{s=0}^{t-1} \theta (s) \cdot \eta _j(t-s). \end{aligned}$$
(G8)

From these rough calculations, we may say that the difference between the time-averaged MSD given by Eq. (G2) and the ensemble MSD given by Eq. (G8) is S2 term in Eq. (G2).

Figure 5 shows the results of numerical calculations comparing the time-averaged MSD and the ensemble MSD. From these figures, it can be confirmed that the time-averaged MSD is different from the ensemble MSD. In addition, we can also confirm that the numerical simulations agree well with the theoretical curves. Since the current analysis is rough, more detailed analysis of the differences between the time-averaged MSD and the ensemble MSD, including analysis of real data, is needed in the future.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H. Relations between anomalous diffusion and fluctuation scaling: the case of ultraslow diffusion and time-scale-independent fluctuation scaling in language. Eur. Phys. J. B 94, 227 (2021). https://doi.org/10.1140/epjb/s10051-021-00236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00236-2

Navigation