Skip to main content

Advertisement

Log in

Phase transition, band structure, optical spectra and magnetic moment of MnO magnetic material upon compression

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using ab initio total energy based on density functional theory calculations, the phase transition, band structure, optical spectra and magnetic moment of MnO in the rock salt structure have been investigated. All studied quantities are discussed with respect to their dependence on pressure. Our results show a phase transition of MnO from the semiconducting rock salt to a metallic CsCl at pressure of 67.12 GPa. Applied pressure is found to play an important role in the modulation of optical properties. The optical absorption coefficient indicates that MnO more readily absorb photons under high pressure. The total magnetic moment for rock salt MnO at zero pressure agrees reasonably well with those reported in the literature and decreases monotonously with increasing pressure.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing not applicable.]

References

  1. M.C. Tamargo (ed.), Optoelectronic Properties of Semiconductors and Superlattices, vol. 12 (II-VI Semiconductor Materials and Their Applications, CRC Press, Taylor & Francis Publisher, 2002), and references therein

  2. S. Saib, N. Bouarissa, Phys. Status Sol. B 244, 1063 (2007)

    Article  ADS  Google Scholar 

  3. I. Khan, I. Ahmad, H. A. Rahnamaye Aliabad, M. Maqbool, Mater. Today: Proc. 2(10, Part B), 5122 (2015)

  4. F. Mezrag, W. Kara Mohamed, N. Bouarissa, Phys. B 405, 2272 (2010)

    Article  ADS  Google Scholar 

  5. H.J. Fan, A.S. Barnard, M. Zacharias, Appl. Phys. Lett. 90, 143116 (2007)

    Article  ADS  Google Scholar 

  6. A.H. Reidies, “Manganese Compounds’’ Ullmann’s Encyclopedia of Chemical Technology (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  7. J.E. Post, Proc. Natl. Acad. Sci. USA 96, 3447 (1999), and references therein

  8. Y. Mita, Y. Sakai, D. Izaki, M. Kobayashi, S. Endo, S. Mochizuki, Phys. Status Sol. B 223, 247 (2001)

    Article  ADS  Google Scholar 

  9. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, 1997)

  10. Z. Fang, I.V. Solovyev, H. Sawada, K. Terakura, Phys. Rev. B 59, 762 (1999)

    Article  ADS  Google Scholar 

  11. S. Daoud, N. Bioud, N. Bouarissa, Mater. Sci. Semicond. Process. 31, 124 (2015)

    Article  Google Scholar 

  12. K. Daviau, K.K.M. Lee, Crystals 8, 217 (2018)

    Article  Google Scholar 

  13. N. Bouarissa, Phys. B 406, 2583 (2011)

    Article  ADS  Google Scholar 

  14. G.J. Ackland, Rep. Prog. Phys. 64, 483 (2001), and references therein

  15. N. Bouarissa, Mater. Chem. Phys. 73, 51 (2002)

    Article  Google Scholar 

  16. W.B. Holzapfel, Rep. Prog. Phys. 59, 29 (1996), and references therein

  17. J.V. Badding, Annu. Rev. Mater. Sci. 28, 631 (1998), and references therein

  18. N. Bouarissa, Phys. Status Sol. B 231, 391 (2002)

    Article  ADS  Google Scholar 

  19. I. Lukačević, D. Kirin, Croat. Chem. Acta 83, 15 (2010)

    Google Scholar 

  20. F.J. Manjón, D. Errandonea, Phys. Status Sol. B 246, 9 (2009)

    Article  ADS  Google Scholar 

  21. S. Saib, N. Bouarissa, Solid State Electron. 50, 763 (2006)

    Article  ADS  Google Scholar 

  22. R. Jeanloz, A. Rudy, J. Geophys. Res. 92, 11433 (1987)

    Article  ADS  Google Scholar 

  23. Y. Mita, D. Izaki, M. Kobayashi, S. Endo, Phys. Rev. B 71, 100101 (R) (2005)

  24. D. Belmonte, C. Gatti, G. Ottonello, P. Richet, M. Vetuschi Zuccolini, J. Phys. Chem A 120, 8881 (2016)

    Article  Google Scholar 

  25. D. Belmonte, G. Ottonello, M. Vetuschi Zuccolini, Calphad 59, 12 (2017)

    Article  Google Scholar 

  26. D. Belmonte, G. Ottonello, M. Vetuschi Zuccolini, Am. Mineral. 99, 1449 (2014)

    Article  ADS  Google Scholar 

  27. M. De La Pierre, D. Belmonte, Am. Mineral. 101, 162 (2016)

    Article  ADS  Google Scholar 

  28. D. Belmonte, Minerals 7, 183 (2017)

    Article  ADS  Google Scholar 

  29. U.D. Wdowik, J. Phys. Condens. Matter 22, 045404 (2010)

    Article  ADS  Google Scholar 

  30. Y. Noguchi, K. Kusaba, K. Fukuoka, Y. Syono, Geophys. Res. Lett. 23, 1469 (1996)

    Article  ADS  Google Scholar 

  31. Z. Fang, K. Terakura, H. Sawada, T. Miyazaki, I. Solovyev, Phys. Rev. Lett. 81, 1027 (1998)

    Article  ADS  Google Scholar 

  32. T. Kondo, T. Yagi, Y. Syono, T. Kikegawa, O. Shimomura, Rev. High Press. Sci. Technol. 7, 148 (1998)

    Article  Google Scholar 

  33. Y. Syono, Y. Noguchi, K. Fukuoka, K. Kusaba, T. Atou, AIP Conf. Proc. 429, 151 (1998)

    Article  ADS  Google Scholar 

  34. T. Kondo, T. Yagi, Y. Syono, Y. Noguchi, T. Atou, T. Kikegawa, O. Shimomura, J. Appl. Phys. 87, 4153 (2000)

    Article  ADS  Google Scholar 

  35. S.L. Webb, I. Jackson, J.D. Fitz Gerald, Phys. Earth Planet. Inter. 52, 117 (1988)

    Article  ADS  Google Scholar 

  36. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  37. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  38. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, in WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (Techn. Universitat, Wien, Austria, 2001)

  39. Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  40. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  42. N. Bouarissa, S. Zerroug, S.A. Siddiqui, A. Hajry, Superlattices Microstruct. 64, 237 (2013)

    Article  ADS  Google Scholar 

  43. A. El Hassasna, A. Bechiri, N. Bouarissa, Mater. Res. Exp. 6, 085915 (2019)

    Article  Google Scholar 

  44. S. Zerroug, F. Ali Sahraoui, N. Bouarissa, Appl. Phys. A 97, 345 (2009)

    Article  ADS  Google Scholar 

  45. S. Zerroug, F. Ali Sahraoui, N. Bouarissa, Eur. Phys. J. B 57, 9 (2007)

    Article  ADS  Google Scholar 

  46. M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer-Verlag, Berlin, 1989)

    Book  Google Scholar 

  47. K. Kassali, N. Bouarissa, Mater. Chem. Phys. 76, 255 (2002)

    Article  Google Scholar 

  48. N. Moulai, N. Bouarissa, B. Lagoun, D. Kendil, J. Supercond. Nov. Magn. 32, 1077 (2019)

    Article  Google Scholar 

  49. S. Ozaki, S. Adachi, J. Appl. Phys. 75, 7470 (1994)

    Article  ADS  Google Scholar 

  50. K.I. Suzuki, S. Adachi, J. Appl. Phys. 83, 1018 (1998)

    Article  ADS  Google Scholar 

  51. A. Bouarissa, A. Gueddim, N. Bouarissa, S. Djellali, Polym. Bull. 75, 3023 (2018)

    Article  Google Scholar 

  52. N. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 50, 21 (2007)

    Article  ADS  Google Scholar 

  53. N. Bouarissa, Mater. Sci. Eng. B 86, 53 (2001)

    Article  Google Scholar 

  54. A. Gueddim, S. Zerroug, N. Bouarissa, J. Lumin. 135, 243 (2013)

    Article  Google Scholar 

  55. M.A. Khan, N. Bouarissa, Optik 124, 5095 (2013)

    Article  ADS  Google Scholar 

  56. R. Goldhahn, J. Scheiner, S. Shokhovets, T. Frey, U. Kőhler, D.J. As, K. Lischka, Appl. Phys. Lett. 76, 291 (2000)

    Article  ADS  Google Scholar 

  57. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  58. N. Bouarissa, Mater. Chem. Phys. 72, 387 (2001)

    Article  Google Scholar 

  59. S. Adachi, Properties of Group-IV, III-V, and II-VI Semiconductors (Wiley, Chichester, 2005)

    Book  Google Scholar 

  60. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons Ltd., Chichester, 2009)

    Book  Google Scholar 

  61. N. Bouarissa, M. Boucenna, Phys. Scr. 79, 015701 (2009)

    Article  ADS  Google Scholar 

  62. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties (Springer-Verlag, Berlin, 1996)

    Book  MATH  Google Scholar 

  63. N. Bouarissa, Optik 138, 263 (2017)

    Article  ADS  Google Scholar 

  64. A.K. Cheetham, D.A.O. Hope, Phys. Rev. B 27, 6964 (1983)

    Article  ADS  Google Scholar 

  65. N.B. Ekreem, A.G. Olabi, T. Prescott, A. Rafferty, M.S.J. Hashmi, J. Mater. Process. Technol. 191, 96 (2007)

    Article  Google Scholar 

  66. Y. Harrache, N. Bouarissa, Solid State Commun. 295, 26 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number R.G.P.1/164/40.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouarissa, N., Gueddim, A., Algarni, H. et al. Phase transition, band structure, optical spectra and magnetic moment of MnO magnetic material upon compression. Eur. Phys. J. B 94, 215 (2021). https://doi.org/10.1140/epjb/s10051-021-00223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00223-7

Navigation