Skip to main content
Log in

Tempered fractional Brownian motion on finite intervals

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation time the power-law correlations between the increments of fractional Brownian motion. Here, we investigate such tempered fractional Brownian motion confined to a finite interval by reflecting walls. Specifically, we explore how the tempering of the long-time correlations affects the strong accumulation and depletion of particles near reflecting boundaries recently discovered for untempered fractional Brownian motion. We find that exponential tempering introduces a characteristic size for the accumulation and depletion zones but does not affect the functional form of the probability density close to the wall. In contrast, power-law tempering leads to more complex behavior that differs between the superdiffusive and subdiffusive cases.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data supporting the findings are available from the corresponding author upon reasonable request.]

Notes

  1. A different type of tempering was proposed by Meerschaert and Sabzikar [54]. It leads to fundamentally different behavior and does not describe the anomalous to normal diffusion crossover. We will briefly come back to this point in the concluding section.

  2. Naively, one might have expected a crossover between two anomalous diffusion regimes, characterized by anomalous diffusion exponent values \(\alpha \) (for times below \(t_*\)) and \(\alpha -\mu \) (for times above \(t_*\)). Because of the fragility of the anticorrelations in subdiffusive FBM, this is not the case.

References

  1. A. Einstein, Investigations on the Theory of the Brownian Movement ( Dover, New York, 1956)

  2. P. Langevin, C.R. Acad, Sci. Paris 146, 530 (1908)

    Google Scholar 

  3. M. von Smoluchowski, Z. Phys. Chem. 92U, 129 (1918). https://doi.org/10.1515/zpch-1918-9209

    Article  Google Scholar 

  4. B. Hughes, Random Walks and Random Environments, Volume 1: Random Walks ( Oxford University Press, Oxford, 1995)

  5. J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990). https://doi.org/10.1016/0370-1573(90)90099-N

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000). https://doi.org/10.1016/S0370-1573(00)00070-3

    Article  ADS  Google Scholar 

  7. F. Höfling , T. Franosch, Rep. Progr. Phys. 76, 046602 (2013). http://stacks.iop.org/0034-4885/76/i=4/a=046602

  8. P.C. Bressloff, J.M. Newby, Rev. Mod. Phys. 85, 135 (2013). https://doi.org/10.1103/RevModPhys.85.135

    Article  ADS  Google Scholar 

  9. R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014). https://doi.org/10.1039/C4CP03465A

    Article  Google Scholar 

  10. Y. Meroz, I.M. Sokolov, Phys. Rep. 573, 1 (2015). https://doi.org/10.1016/j.physrep.2015.01.002

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Metzler, J.-H. Jeon, A. Cherstvy, Biochim. Biophys. Acta 1858, 2451 (2016). https://doi.org/10.1016/j.bbamem.2016.01.022

    Article  Google Scholar 

  12. K. Nørregaard, R. Metzler, C.M. Ritter, K. Berg-Sørensen, L.B. Oddershede, Chem. Rev. 117, 4342 (2017). https://doi.org/10.1021/acs.chemrev.6b00638

    Article  Google Scholar 

  13. X.S. Xie, P.J. Choi, G.-W. Li, N.K. Lee, G. Lia, Annu. Rev. Biophys. 37, 417 (2008). https://doi.org/10.1146/annurev.biophys.37.092607.174640

    Article  Google Scholar 

  14. C. Bräuchle, D.C. Lamb, J. Michaelis, Single Particle Tracking and Single Molecule Energy Transfer ( Wiley-VCH, Weinheim, 2012)

  15. C. Manzo, M.F. Garcia-Parajo, Rep. Progr. Phys. 78, 124601 (2015). http://stacks.iop.org/0034-4885/78/i=12/a=124601

  16. A.N. Kolmogorov, C.R. (Doklady) Acad. Sci. URSS (N.S.) 26, 115 (1940). https://mathscinet.ams.org/mathscinet-getitem?mr=MR0003441

  17. B.B. Mandelbrot, J.W.V. Ness, SIAM Rev. 10, 422 (1968). https://doi.org/10.1137/1010093

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Szymanski, M. Weiss, Phys. Rev. Lett. 103, 038102 (2009). https://doi.org/10.1103/PhysRevLett.103.038102

    Article  ADS  Google Scholar 

  19. M. Magdziarz, A. Weron, K. Burnecki, J. Klafter, Phys. Rev. Lett. 103, 180602 (2009). https://doi.org/10.1103/PhysRevLett.103.180602

    Article  ADS  Google Scholar 

  20. S.C. Weber, A.J. Spakowitz, J.A. Theriot, Phys. Rev. Lett. 104, 238102 (2010). https://doi.org/10.1103/PhysRevLett.104.238102

    Article  ADS  Google Scholar 

  21. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, R. Metzler, Phys. Rev. Lett. 106, 048103 (2011). https://doi.org/10.1103/PhysRevLett.106.048103

    Article  ADS  Google Scholar 

  22. J.-H. Jeon, H.M.-S. Monne, M. Javanainen, R. Metzler, Phys. Rev. Lett. 109, 188103 (2012). https://doi.org/10.1103/PhysRevLett.109.188103

    Article  ADS  Google Scholar 

  23. S.M.A. Tabei, S. Burov, H.Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L.H. Philipson, A.R. Dinner, N.F. Scherer, Proc. Nat. Acad. Sci. 110, 4911 (2013). https://doi.org/10.1073/pnas.1221962110

    Article  ADS  Google Scholar 

  24. S. Janušonis, N. Detering, Biochimie 161, 15 (2019). https://doi.org/10.1016/j.biochi.2018.07.014

    Article  Google Scholar 

  25. S. Janušonis, N. Detering, R. Metzler, T. Vojta, Front. Comp. Neurosci. 14, 56 (2020). https://doi.org/10.3389/fncom.2020.00056

    Article  Google Scholar 

  26. N. Chakravarti, K. Sebastian, Chem. Phys. Lett. 267, 9 (1997). https://doi.org/10.1016/S0009-2614(97)00075-4

    Article  ADS  Google Scholar 

  27. D. Panja, J. Stat. Mech. 2010, L02001 (2010). http://stacks.iop.org/1742-5468/2010/i=02/a=L02001

  28. T. Mikosch, S. Resnick, H. Rootzen, A. Stegeman, Ann. Appl. Prob. 12, 23 (2002). https://doi.org/10.1214/aoap/1015961155

    Article  Google Scholar 

  29. F. Comte, E. Renault, Math. Financ. 8, 291 (1998)

    Article  Google Scholar 

  30. S. Rostek, R. Schöbel, Econ. Model. 30, 30 (2013). https://doi.org/10.1016/j.econmod.2012.09.003

    Article  Google Scholar 

  31. J.-P. Kahane, Some Random Series of Functions ( Cambridge University Press, London, 1985)

  32. A.M. Yaglom, Correlation Theory of Stationary and Related Random Functions ( Springer, Heidelberg, 1987)

  33. J. Beran, Statistics for Long-Memory Processes ( Chapman & Hall, New York, 1994)

  34. F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications (Springer, Berlin, 2008)

  35. S. Redner, A guide to first-passage processes (Cambridge University Press, Cambridge, 2001)

  36. A. Hansen, T. Engøy, K.J. Måløy, Fractals 02, 527 (1994). https://doi.org/10.1142/S0218348X94000740

    Article  Google Scholar 

  37. M. Ding, W. Yang, Phys. Rev. E 52, 207 (1995). https://doi.org/10.1103/PhysRevE.52.207

    Article  ADS  Google Scholar 

  38. J. Krug, H. Kallabis, S.N. Majumdar, S.J. Cornell, A.J. Bray, C. Sire, Phys. Rev. E 56, 2702 (1997). https://doi.org/10.1103/PhysRevE.56.2702

    Article  ADS  Google Scholar 

  39. G.M. Molchan, Commun. Math. Phys. 205, 97 (1999). https://doi.org/10.1007/s002200050669

    Article  ADS  Google Scholar 

  40. J.-H. Jeon, A.V. Chechkin, R. Metzler, EPL (Europhys. Lett.) 94, 20008 (2011). https://doi.org/10.1209/0295-5075/94/20008

    Article  ADS  Google Scholar 

  41. F. Aurzada, M.A. Lifshits, Theory Prob. Appl. 64, 490 (2019). https://doi.org/10.1137/S0040585X97T989659

    Article  Google Scholar 

  42. C. Chatelain, Y. Kantor, M. Kardar, Phys. Rev. E 78, 021129 (2008). https://doi.org/10.1103/PhysRevE.78.021129

    Article  ADS  Google Scholar 

  43. A. Zoia, A. Rosso, S.N. Majumdar, Phys. Rev. Lett. 102, 120602 (2009). https://doi.org/10.1103/PhysRevLett.102.120602

    Article  ADS  Google Scholar 

  44. K.J. Wiese, S.N. Majumdar, A. Rosso, Phys. Rev. E 83, 061141 (2011). https://doi.org/10.1103/PhysRevE.83.061141

    Article  ADS  Google Scholar 

  45. M. Delorme, K.J. Wiese, Phys. Rev. Lett. 115, 210601 (2015). https://doi.org/10.1103/PhysRevLett.115.210601

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Delorme, K.J. Wiese, Phys. Rev. E 94, 012134 (2016). https://doi.org/10.1103/PhysRevE.94.012134

    Article  ADS  Google Scholar 

  47. M. Arutkin, B. Walter, K.J. Wiese, Phys. Rev. E 102, 022102 (2020). https://doi.org/10.1103/PhysRevE.102.022102

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Vojta, A. Warhover, J. Stat. Mech. 2021, 033215 (2021). https://doi.org/10.1088/1742-5468/abe700

    Article  Google Scholar 

  49. A.H.O. Wada, T. Vojta, Phys. Rev. E 97, 020102 (2018). https://doi.org/10.1103/PhysRevE.97.020102

    Article  ADS  Google Scholar 

  50. A.H.O. Wada, A. Warhover, T. Vojta, J. Stat. Mech. 2019, 033209 (2019). https://doi.org/10.1088/1742-5468/ab02f1

  51. T. Guggenberger, G. Pagnini, T. Vojta, R. Metzler, New J. Phys. 21, 022002 (2019). https://doi.org/10.1088/1367-2630/ab075f

    Article  ADS  MathSciNet  Google Scholar 

  52. T. Vojta, S. Halladay, S. Skinner, S. Janušonis, T. Guggenberger, R. Metzler, Phys. Rev. E 102, 032108 (2020). https://doi.org/10.1103/PhysRevE.102.032108

    Article  ADS  MathSciNet  Google Scholar 

  53. D. Molina-Garcia, T. Sandev, H. Safdari, G. Pagnini, A. Chechkin, R. Metzler, New J. Phys. 20, 103027 (2018). https://doi.org/10.1088/1367-2630/aae4b2

    Article  Google Scholar 

  54. M.M. Meerschaert, F. Sabzikar, Stat. Prob. Lett. 83, 2269 (2013). https://doi.org/10.1016/j.spl.2013.06.016

    Article  Google Scholar 

  55. H. Qian, in booktitle Processes with Long-Range Correlations: Theory and Applications, editor edited by editor G. Rangarajan and editor M. Ding (Springer, Berlin, Heidelberg, 2003), pp. 22–33. https://doi.org/10.1007/3-540-44832-2_2

  56. Y.L. Klimontovich, Statistical theory of open systems - Volume 1: A unified approach to kinetic description of processes in active systems ( Kluwer Academic Publishers, Dordrecht, 1995)

  57. H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5445 (1996). https://doi.org/10.1103/PhysRevE.53.5445

    Article  ADS  Google Scholar 

  58. P. L’Ecuyer, Math. Comput. 68, 261 (1999). https://doi.org/10.1090/S0025-5718-99-01039-X

    Article  ADS  MathSciNet  Google Scholar 

  59. G. Marsaglia, Double precision RNGs, Posted to sci.math.num-analysis (2005). http://sci.tech-archive.net/Archive/sci.math.num-analysis/2005-11/msg00352.html

  60. R. Kubo, Rep. Progr. Phys. 29, 255 (1966). https://doi.org/10.1088/0034-4885/29/1/306

    Article  ADS  Google Scholar 

  61. T. Vojta, S. Skinner, R. Metzler, Phys. Rev. E 100, 042142 (2019). https://doi.org/10.1103/PhysRevE.100.042142

    Article  ADS  MathSciNet  Google Scholar 

  62. Y. Chen, X. Wang, W. Deng, J. Stat. Phys. 169, 18 (2017). https://doi.org/10.1007/s10955-017-1861-4

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Cottrell SEED award from Research Corporation and by the National Science Foundation under Grant Nos. DMR-1828489 and OAC-1919789. The simulations were performed on the Pegasus and Foundry clusters at Missouri S&T. We acknowledge helpful discussions with Ralf Metzler and Skirmantas Janusonis.

Author information

Authors and Affiliations

Authors

Contributions

T.V. conceived and coordinated the study. Z.M. and S.H. performed the computer simulations and analyzed the data. Z.M. and T.V. created the figures. T.V. wrote the manuscript.

Corresponding author

Correspondence to Thomas Vojta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vojta, T., Miller, Z. & Halladay, S. Tempered fractional Brownian motion on finite intervals. Eur. Phys. J. B 94, 208 (2021). https://doi.org/10.1140/epjb/s10051-021-00208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00208-6

Navigation