Skip to main content
Log in

Tyrosine kinases: complex molecular systems challenging computational methodologies

  • Topical Review - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Classical molecular dynamics (MD) simulations based on atomic models play an increasingly important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Due to the large conformational changes and long timescales involved in their function, these kinases present particularly challenging problems to modern computational and theoretical frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models have achieved limited success in tackling the broader conformational ensemble and biased methods are often employed to examine specific long timescale events. Recent advances in machine learning continue to push the limitations of current methodologies and provide notable improvements when integrated with the existing frameworks. A broad perspective is drawn from a critical review of recent studies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a review, therefore no data was deposited.]

References

  1. Y. Deng, B. Roux, Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. 113, 2234–2246 (2009)

    Article  Google Scholar 

  2. Y.L. Lin, Y. Meng, W. Jiang, B. Roux, Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc. Natl. Acad. Sci. U.S.A. 110, 1664–1669 (2013)

    Article  ADS  Google Scholar 

  3. Y.L. Lin, B. Roux, Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases. J. Am. Chem. Soc. 135, 14741–14753 (2013)

    Article  Google Scholar 

  4. Y.L. Lin, Y. Meng, L. Huang, B. Roux, Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity. J. Am. Chem. Soc. 136, 14753–14762 (2014)

    Article  Google Scholar 

  5. W. Jiang, Y. Luo, L. Maragliano, B. Roux, Calculation of free energy landscape in multi-dimensions with Hamiltonian-exchange umbrella sampling on petascale supercomputer. J. Chem. Theory Comput. 8, 4672–4680 (2012)

    Article  Google Scholar 

  6. W. Wojtas-Niziurski, Y. Meng, B. Roux, S. Berneche, Self-learning adaptive umbrella sampling method for the determination of free energy landscapes in multiple dimensions. J. Chem. Theory Comput. 9, 1885–1895 (2013)

    Article  Google Scholar 

  7. E. Weinan, W. Ren, E. Eijnden, String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Article  ADS  Google Scholar 

  8. L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125, 24106 (2006)

    Article  Google Scholar 

  9. A.C. Pan, D. Sezer, B. Roux, Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. 112, 3432–3440 (2008)

    Article  Google Scholar 

  10. B.M. Dickson, H. Huang, C.B. Post, Unrestrained computation of free energy along a path. J. Phys. Chem. B 116, 11046–11055 (2012)

    Article  Google Scholar 

  11. C. Templeton, S.H. Chen, A. Fathizadeh, R. Elber, Rock climbing: a local-global algorithm to compute minimum energy and minimum free energy pathways. J. Chem. Phys. 147, 152718 (2017)

    Article  ADS  Google Scholar 

  12. G.R. Bowman, V.S. Pande, F. Noé, An introduction to Markov state models and their application to long timescale molecular simulation. In: Advances in Experimental Medicine and Biology, vol. 797. Springer, Netherlands (2014)

  13. V.S. Pande, K. Beauchamp, G.R. Bowman, Everything you wanted to know about Markov state models but were afraid to ask. Methods 52, 99–105 (2010)

    Article  Google Scholar 

  14. J.H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J.D. Chodera, C. Schutte, F. Noe, Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011)

    Article  ADS  Google Scholar 

  15. F. Noe, C. Clementi, Kinetic distance and kinetic maps from molecular dynamics simulation. J. Chem. Theory Comput. 11, 5002–5011 (2015)

    Article  Google Scholar 

  16. G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, F. Noe, Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102 (2013)

    Article  ADS  Google Scholar 

  17. P. Metzner, C. Schutte, E. Vanden-Eijnden, Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125, 084110 (2006). https://doi.org/10.1063/1.2335447

  18. P. Metzner, C. Schutte, E. Vanden-Eijnden, Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192–1219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Vanden-Eijnden, Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010)

    Article  Google Scholar 

  20. E. Vanden-Eijnden, Transition path theory. Adv. Exp. Med. Biol. 797, 91–100 (2014)

    Article  MATH  Google Scholar 

  21. F. Nuske, B.G. Keller, G. Perez-Hernandez, A.S. Mey, F. Noe, Variational approach to molecular kinetics. J. Chem. Theory Comput. 10, 1739–1752 (2014)

    Article  Google Scholar 

  22. E.H. Thiede, D. Giannakis, A.R. Dinner, J. Weare, Galerkin approximation of dynamical quantities using trajectory data. J. Chem. Phys. 150, 244111 (2019)

    Article  ADS  Google Scholar 

  23. C. Lorpaiboon, E.H. Thiede, R.J. Webber, J. Weare, A.R. Dinner, Integrated variational approach to conformational dynamics: a robust strategy for identifying eigenfunctions of dynamical operators. J. Phys. Chem. B 124, 9354–9364 (2020)

    Article  Google Scholar 

  24. A. Bittracher, R. Banisch, C. Schutte, Data-driven computation of molecular reaction coordinates. J. Chem. Phys. 149, 154103 (2018). https://doi.org/10.1063/1.5035183

  25. N.D. Conrad, M. Weber, C. Schutte, Finding dominant structures of nonreversible Markov processes. Multiscale Model. Simul. 14, 1319–1340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Mardt, L. Pasquali, H. Wu, F. Noe, VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9, 5 (2018)

    Article  ADS  Google Scholar 

  27. F. Noe, G. De Fabritiis, C. Clementi, Machine learning for protein folding and dynamics. Curr. Opin. Struct. Biol. 60, 77–84 (2020)

    Article  Google Scholar 

  28. F. Noe, A. Tkatchenko, K.R. Muller, C. Clementi, Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020)

    Article  Google Scholar 

  29. F. Noe, S. Olsson, J. Kohler, H. Wu, Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, 1001 (2019). https://doi.org/10.1126/science.aaw1147

  30. A. Bittracher, C. Schutte, A probabilistic algorithm for aggregating vastly undersampled large Markov chains. Phys. D 416, 132799 (2021). https://doi.org/10.1016/j.physd.2020.132799

  31. G. Manning, D.B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam, The protein kinase complement of the human genome. Science 298, 1912–1934 (2002)

    Article  ADS  Google Scholar 

  32. D. Fabbro, C. Garcia-Echeverria, Targeting protein kinases in cancer therapy. Curr. Opin. Drug Discov. Dev. 5, 701–712 (2002)

    Google Scholar 

  33. P. Cohen, Protein kinases-the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002)

    Article  Google Scholar 

  34. M.E.M. Noble, J.A. Endicott, L.N. Johnson, Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004)

    Article  ADS  Google Scholar 

  35. J.M. Zhang, P.L. Yang, N.S. Gray, Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009)

    Article  Google Scholar 

  36. S.Y. Zhang, D.H. Yu, Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol. Sci. 33, 122–128 (2012)

    Article  Google Scholar 

  37. F.M. Ferguson, N.S. Gray, Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17, 353–377 (2018)

    Article  Google Scholar 

  38. T.J. Boggon, M.J. Eck, Structure and regulation of Src family kinases. Oncogene 23, 7918–7927 (2004)

    Article  Google Scholar 

  39. H. Yamaguchi, W.A. Hendrickson, Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996)

    Article  ADS  Google Scholar 

  40. F. Sicheri, I. Moarefi, J. Kuriyan, Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997)

    Article  ADS  Google Scholar 

  41. A.P. Kornev, N.M. Haste, S.S. Taylor, L.F. Ten Eyck, Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. U.S.A. 103, 17783–17788 (2006)

    Article  ADS  Google Scholar 

  42. B. Nagar, W.G. Bornmann, P. Pellicena, T. Schindler, D.R. Veach, W.T. Miller, B. Clarkson, J. Kuriyan, Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 62, 4236–4243 (2002)

    Google Scholar 

  43. T. Schindler, W. Bornmann, P. Pellicena, W.T. Miller, B. Clarkson, J. Kuriyan, Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289, 1938–1942 (2000)

    Article  ADS  Google Scholar 

  44. N. Vajpai, A. Strauss, G. Fendrich, S.W. Cowan-Jacob, P.W. Manley, S. Grzesiek, W. Jahnke, Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. J. Biol. Chem. 283, 18292–18302 (2008)

    Article  Google Scholar 

  45. M.A. Young, S. Gonfloni, G. Superti-Furga, B. Roux, J. Kuriyan, Dynamic coupling between the SH2 and SH3 domains of c-Src and hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001)

    Article  Google Scholar 

  46. A. Suenaga, A.B. Kiyatkin, M. Hatakeyama, N. Futatsugi, N. Okimoto, Y. Hirano, T. Narumi, A. Kawai, R. Susukita, T. Koishi, H. Furusawa, K. Yasuoka, N. Takada, Y. Ohno, M. Taiji, T. Ebisuzaki, J.B. Hoek, A. Konagaya, B.N. Kholodenko, Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J. Biol. Chem. 279, 4657–4662 (2004)

    Article  Google Scholar 

  47. N.M. Levinson, O. Kuchment, K. Shen, M.A. Young, M. Koldobskiy, M. Karplus, P.A. Cole, J. Kuriyan, A Src-like inactive conformation in the Abl tyrosine kinase domain. PLoS Biol. 4, 753–767 (2006)

    Article  Google Scholar 

  48. A. Dixit, G.M. Verkhivker, Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput. Biol. 5, e10004487 (2009)

    Article  Google Scholar 

  49. A. Cembran, L.R. Masterson, C.L. McClendon, S.S. Taylor, J.L. Gao, G. Veglia, Conformational equilibrium of N-myristoylated cAMP-dependent protein kinase A by molecular dynamics simulations. Biochemistry 51, 10186–10196 (2012)

    Article  Google Scholar 

  50. L.R. Masterson, A. Cembran, L. Shi, G. Veglia, in Adv. Protein Chem. Struct. Biol., vol. 87, ed. by C. Christov, T. Karabencheva-Christova (Academic Press, 2012), Ch. 12, pp. 363–389

  51. B.W. Boras, A. Kornev, S.S. Taylor, A.D. McCulloch, Using Markov state models to develop a mechanistic understanding of protein kinase A regulatory subunit RI alpha activation in response to cAMP binding. J. Biol. Chem. 289, 30040–30051 (2014)

    Article  Google Scholar 

  52. E.D. Lopez, O. Burastero, J.P. Arcon, L.A. Defelipe, N.G. Ahn, M.A. Marti, A.G. Turjanski, Kinase activation by small conformational changes. J. Chem. Inf. Model. 60, 821–832 (2020)

    Article  Google Scholar 

  53. Y.B. Shan, K. Gnanasambandan, D. Ungureanu, E.T. Kim, H. Hammaren, K. Yamashita, O. Silvennoinen, D.E. Shaw, S.R. Hubbard, Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat. Struct. Mol. Biol. 21, 579–584 (2014)

    Article  Google Scholar 

  54. L. Sutto, F.L. Gervasio, Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase. Proc. Natl. Acad. Sci. U.S.A. 110, 10616–10621 (2013)

    Article  ADS  Google Scholar 

  55. Y.B. Shan, M.P. Eastwood, X.W. Zhang, E.T. Kim, A. Arkhipov, R.O. Dror, J. Jumper, J. Kuriyan, D.E. Shaw, Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 149, 860–870 (2012)

    Article  Google Scholar 

  56. A. Arkhipov, Y.B. Shan, R. Das, N.F. Endres, M.P. Eastwood, D.E. Wemmer, J. Kuriyan, D.E. Shaw, Architecture and membrane interactions of the EGF receptor. Cell 152, 557–569 (2013)

    Article  Google Scholar 

  57. A. Arkhipov, Y.B. Shan, E.T. Kim, R.O. Dror, D.E. Shaw, Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. Elife 2, e00708 (2013). https://doi.org/10.7554/eLife.00708

  58. N.F. Endres, R. Das, A.W. Smith, A. Arkhipov, E. Kovacs, Y.J. Huang, J.G. Pelton, Y.B. Shan, D.E. Shaw, D.E. Wemmer, J.T. Groves, J. Kuriyan, Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543–556 (2013)

    Article  Google Scholar 

  59. Y.B. Shan, A. Arkhipov, E.T. Kim, A.C. Pan, D.E. Shaw, Transitions to catalytically inactive conformations in EGFR kinase. Proc. Natl. Acad. Sci. U.S.A. 110, 7270–7275 (2013)

    Article  ADS  Google Scholar 

  60. M. Yan, H. Wang, Q. Wang, Z. Zhang, C. Zhang, Allosteric inhibition of c-Met kinase in sub-microsecond molecular dynamics simulations induced by its inhibitor, tivantinib. Phys. Chem. Chem. Phys. 18, 10367–10374 (2016)

    Article  Google Scholar 

  61. M.A. Seeliger, P. Ranjitkar, C. Kasap, Y.B. Shan, D.E. Shaw, N.P. Shah, J. Kuriyan, D.J. Maly, Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res. 69, 2384–2392 (2009)

    Article  Google Scholar 

  62. Y.B. Shan, M.A. Seeliger, M.P. Eastwood, F. Frank, H.F. Xu, M.O. Jensen, R.O. Dror, J. Kuriyan, D.E. Shaw, A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc. Natl. Acad. Sci. U.S.A. 106, 139–144 (2009)

    Article  ADS  Google Scholar 

  63. A.C. Dar, M.S. Lopez, K.M. Shokat, Small molecule recognition of c-Src via the lmatinib-binding conformation. Chem. Biol. 15, 1015–1022 (2008)

    Article  Google Scholar 

  64. M.A. Seeliger, B. Nagar, F. Frank, X. Cao, M.N. Henderson, J. Kuriyan, c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 15, 299–311 (2007)

    Article  Google Scholar 

  65. S.W. Cowan-Jacob, H. Mobitz, D. Fabbro, Structural biology contributions to tyrosine kinase drug discovery. Curr. Opin. Cell Biol. 21, 280–287 (2009)

    Article  Google Scholar 

  66. A. Aleksandrov, T. Simonson, Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. J. Biol. Chem. 285, 13807–13815 (2010)

    Article  Google Scholar 

  67. S. Lovera, M. Morando, E. Pucheta-Martinez, J.L. Martinez-Torrecuadrada, G. Saladino, F.L. Gervasio, Towards a molecular understanding of the link between imatinib resistance and kinase conformational dynamics. PLoS Comput. Biol. 11, e1004578 (2015)

    Article  ADS  Google Scholar 

  68. S. Lovera, L. Sutto, R. Boubeva, L. Scapozza, N. Dolker, F.L. Gervasio, The different flexibility of c-Src and c-Abl kinases regulates the accessibility of a druggable inactive conformation. J. Am. Chem. Soc. 134, 2496–2499 (2012)

    Article  Google Scholar 

  69. Y. Meng, Y.L. Lin, B. Roux, Computational study of the “DFG-flip’’ conformational transition in c-Abl and c-Src tyrosine kinases. J. Phys. Chem. B 119, 1443–1456 (2015)

    Article  Google Scholar 

  70. H. Vashisth, L. Maragliano, C.F. Abrams, “DFG-Flip’’ in the insulin receptor kinase is facilitated by a helical intermediate state of the activation loop. Biophys. J. 102, 1979–1987 (2012)

    Article  ADS  Google Scholar 

  71. F. Filomia, F. De Rienzo, M.C. Menziani, Insights into MAPK p38 alpha DFG flip mechanism by accelerated molecular dynamics. Bioorgan. Med. Chem. 18, 6805–6812 (2010)

    Article  Google Scholar 

  72. A. Dixit, G.M. Verkhivker, Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput. Biol. 7, e1002179 (2011)

    Article  ADS  Google Scholar 

  73. R.S.K. Vijayan, P. He, V. Modi, K.C. Duong-Ly, H.C. Ma, J.R. Peterson, R.L. Dunbrack, R.M. Levy, Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J. Med. Chem. 58, 466–479 (2015)

    Article  Google Scholar 

  74. A. Haldane, W.F. Flynn, P. He, R.S.K. Vijayan, R.M. Levy, Structural propensities of kinase family proteins from a Potts model of residue co-variation. Protein Sci. 25, 1378–1384 (2016)

    Article  Google Scholar 

  75. R.V. Agafonov, C. Wilson, R. Otten, V. Buosi, D. Kern, Energetic dissection of Gleevec’s selectivity toward human tyrosine kinases. Nat. Struct. Mol. Biol. 21, 848–853 (2014)

    Article  Google Scholar 

  76. J. Mendieta, F. Gago, In silico activation of Src tyrosine kinase reveals the molecular basis for intramolecular autophosphorylation. J. Mol. Graph. Model. 23, 189–198 (2004)

    Article  Google Scholar 

  77. N.K. Banavali, B. Roux, The N-terminal end of the catalytic domain of Src kinase Hck is a conformational switch implicated in long-range allosteric regulation. Structure 13, 1715–1723 (2005)

    Article  Google Scholar 

  78. N.K. Banavali, B. Roux, Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Proteins Struct. Funct. Bioinform. 67, 1096–1112 (2007)

    Article  Google Scholar 

  79. N.K. Banavali, B. Roux, Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Proteins 74, 378–389 (2009)

    Article  Google Scholar 

  80. E. Paci, M. Karplus, Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J. Mol. Biol. 288, 441–459 (1999)

    Article  Google Scholar 

  81. E. Ozkirimli, C.B. Post, Src kinase activation: a switched electrostatic network. Protein Sci. 15, 1051–1062 (2006)

    Article  Google Scholar 

  82. E. Ozkirimli, S.S. Yadav, W.T. Miller, C.B. Post, An electrostatic network and long-range regulation of Src kinases. Protein Sci. 17, 1871–1880 (2008)

    Article  Google Scholar 

  83. X. Huang, Y. Yao, G.R. Bowman, J. Sun, L.J. Guibas, G. Carlsson, V.S. Pande, Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms, in Pac Symp Biocomput, pp. 228–239 (2010)

  84. W. Jiang, J.C. Phillips, L. Huang, M. Fajer, Y. Meng, J.C. Gumbart, Y. Luo, K. Schulten, B. Roux, Generalized scalable multiple copy algorithms for molecular dynamics simulations in NAMD. Comput. Phys. Commun. 185, 908–916 (2014)

    Article  ADS  Google Scholar 

  85. J.O. Tempkin, B. Qi, M.G. Saunders, B. Roux, A.R. Dinner, J. Weare, Using multiscale preconditioning to accelerate the convergence of iterative molecular calculations. J. Chem. Phys. 140, 184114 (2014)

    Article  ADS  Google Scholar 

  86. W. Gan, S. Yang, B. Roux, Atomistic view of the conformational activation of Src kinase using the string method with swarms-of-trajectories. Biophys. J. 97, L8–L10 (2009)

    Article  Google Scholar 

  87. M. Fajer, Y. Meng, B. Roux, The activation of c-Src tyrosine kinase: conformational transition pathway and free energy landscape. J. Phys. Chem. B 121, 3352–3363 (2017)

    Article  Google Scholar 

  88. H. Huang, R.J. Zhao, B.M. Dickson, R.D. Skeel, C.B. Post, alpha C helix as a switch in the conformational transition of Src/CDK-like kinase domains. J. Phys. Chem. B 116, 4465–4475 (2012)

    Article  Google Scholar 

  89. H. Wu, C.B. Post, Protein conformational transitions from all-atom adaptively biased path optimization. J. Chem. Theory Comput. 14, 5372–5382 (2018)

    Article  Google Scholar 

  90. H. Wu, H. Huang, C.B. Post, All-atom adaptively biased path optimization of Src kinase conformational inactivation: switched electrostatic network in the concerted motion of alphaC helix and the activation loop. J. Chem. Phys. 153, 175101 (2020)

    Article  ADS  Google Scholar 

  91. B. Narayan, A. Fathizadeh, C. Templeton, P. He, S. Arasteh, R. Elber, N.V. Buchete, R.M. Levy, The transition between active and inactive conformations of Abl kinase studied by rock climbing and milestoning. Biochim. Biophys. Acta Gen. Subj. 1864, 129508 (2020)

    Article  Google Scholar 

  92. S. Yang, N.K. Banavali, B. Roux, Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proc. Natl. Acad. Sci. U.S.A. 106, 3776–3781 (2009)

    Article  ADS  Google Scholar 

  93. Y. Meng, B. Roux, Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop. J. Mol. Biol. 426, 423–435 (2014)

    Article  Google Scholar 

  94. D. Shukla, Y. Meng, B. Roux, V.S. Pande, Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun. 5, 3397 (2014)

    Article  ADS  Google Scholar 

  95. Y. Meng, L.G. Ahuja, A.P. Kornev, S.S. Taylor, B. Roux, A catalytically disabled double mutant of Src tyrosine kinase can be stabilized into an active-like conformation. J. Mol. Biol. 430, 881–889 (2018)

    Article  Google Scholar 

  96. L. Maragliano, E. Vanden-Eijnden, B. Roux, Free energy and kinetics of conformational transitions from Voronoi tessellated milestoning with restraining potentials. J. Chem. Theory Comput. 5, 2589–2594 (2009)

    Article  Google Scholar 

  97. M.A. Morando, G. Saladino, N. D’Amelio, E. Pucheta-Martinez, S. Lovera, M. Lelli, B. Lopez-Mendez, M. Marenchino, R. Campos-Olivas, F.L. Gervasio, Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the c-Src kinase. Sci. Rep. 6, 24439 (2016)

    Article  ADS  Google Scholar 

  98. Y. Deng, B. Roux, Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. J. Chem. Phys. 128, 115103 (2008)

    Article  ADS  Google Scholar 

  99. S.K. Albanese, J.D. Chodera, A. Volkamer, S. Keng, R. Abel, L. Wang, Is structure-based drug design ready for selectivity optimization? J. Chem. Inf. Model. 60, 6211–6227 (2020)

    Article  Google Scholar 

  100. S. Yang, B. Roux, Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLoS Comput. Biol. 4, e1000047 (2008)

    Article  ADS  Google Scholar 

  101. L. Huang, M. Wright, S. Yang, L. Blachowicz, L. Makowski, B. Roux, Glycine substitution in SH3-SH2 connector of Hck tyrosine kinase causes population shift from assembled to disassembled state. Biochim. Biophys. Acta Gen. Subj. 1864, 129604 (2020)

    Article  Google Scholar 

  102. G.R. Bowman, K.A. Beauchamp, G. Boxer, V.S. Pande, Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 131, 124101 (2009)

    Article  ADS  Google Scholar 

  103. G.R. Bowman, X. Huang, V.S. Pande, Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49, 197–201 (2009)

    Article  Google Scholar 

  104. G.R. Bowman, D.L. Ensign, V.S. Pande, Enhanced modeling via network theory: adaptive sampling of Markov state models. J. Chem. Theory Comput. 6, 787–794 (2010)

    Article  Google Scholar 

  105. M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L. Beberg, D.L. Ensign, C.M. Bruns, V.S. Pande, Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30, 864–872 (2009)

    Article  Google Scholar 

  106. E. Luttmann, D.L. Ensign, V. Vaidyanathan, M. Houston, N. Rimon, J. Oland, G. Jayachandran, M. Friedrichs, V.S. Pande, Accelerating molecular dynamic simulation on the cell processor and Playstation 3. J. Comput. Chem. 30, 268–274 (2009)

    Article  Google Scholar 

  107. P. Eastman, M.S. Friedrichs, J.D. Chodera, R.J. Radmer, C.M. Bruns, J.P. Ku, K.A. Beauchamp, T.J. Lane, L.P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M.R. Shirts, V.S. Pande, OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9, 461–469 (2013)

    Article  Google Scholar 

  108. R. Salomon-Ferrer, A.W. Gotz, D. Poole, S. Le Grand, R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013)

    Article  Google Scholar 

  109. K.A. Beauchamp, G.R. Bowman, T.J. Lane, L. Maibaum, I.S. Haque, V.S. Pande, MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J. Chem. Theory Comput. 7, 3412–3419 (2011)

    Article  Google Scholar 

  110. M.K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Perez-Hernandez, M. Hoffmann, N. Plattner, C. Wehmeyer, J.H. Prinz, F. Noe, PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015)

    Article  Google Scholar 

  111. Y. Meng, D. Shukla, V.S. Pande, B. Roux, Transition path theory analysis of c-Src kinase activation. Proc. Natl. Acad. Sci. U.S.A. 113, 9193–9198 (2016)

    Article  Google Scholar 

  112. M.P. Harrigan, M.M. Sultan, C.X. Hernandez, B.E. Husic, P. Eastman, C.R. Schwantes, K.A. Beauchamp, R.T. McGibbon, V.S. Pande, MSMBuilder: statistical models for biomolecular dynamics. Biophys. J. 112, 10–15 (2017)

    Article  ADS  Google Scholar 

  113. M.M. Sultan, G. Kiss, V.S. Pande, Towards simple kinetic models of functional dynamics for a kinase subfamily. Nat. Chem. 10, 903–909 (2018)

    Article  Google Scholar 

  114. M.J. Keiser, J.J. Irwin, B.K. Shoichet, The chemical basis of pharmacology. Biochemistry 49, 10267–10276 (2010)

    Article  Google Scholar 

  115. Y. Meng, C. Gao, D.K. Clawson, S. Atwell, M. Russell, M. Vieth, B. Roux, Predicting the conformational variability of Abl tyrosine kinase using molecular dynamics simulations and Markov state models. J. Chem. Theory Comput. 14, 2721–2732 (2018)

    Article  Google Scholar 

  116. F. Paul, Y. Meng, B. Roux, Identification of druggable kinase target conformations using Markov model metastable states analysis of apo-Abl. J. Chem. Theory Comput. 16, 1896–1912 (2020)

    Article  Google Scholar 

  117. F. Paul, T. Thomas, B. Roux, Diversity of long-lived intermediates along the binding pathway of imatinib to Abl kinase revealed by MD simulations. J. Chem. Theory Comput. 16, 7852–7865 (2020)

    Article  Google Scholar 

  118. Y. Meng, B. Roux, Computational study of the W260A activating mutant of Src tyrosine kinase. Protein Sci. 25, 219–230 (2016)

    Article  Google Scholar 

  119. M. LaFevre-Bernt, F. Sicheri, A. Pico, M. Porter, J. Kuriyano, W.T. Miller, Intramolecular regulatory interactions in the Src family kinase Hck probed by mutagenesis of a conserved tryptophan residue. J. Biol. Chem. 273, 32129–32134 (1998)

    Article  Google Scholar 

  120. L. Fang, J. Vilas-Boas, S. Chakraborty, Z.E. Potter, A.C. Register, M.A. Seeliger, D.J. Maly, How ATP-competitive inhibitors allosterically modulate tyrosine kinases that contain a Src-like regulatory architecture. ACS Chem. Biol. 15, 2005–2016 (2020)

    Article  Google Scholar 

  121. M.P. Pond, R. Eells, B.W. Treece, F. Heinrich, M. Losche, B. Roux, Membrane anchoring of Hck kinase via the intrinsically disordered SH4-U and length scale associated with subcellular localization. J. Mol. Biol. 432, 2985–2997 (2020)

    Article  Google Scholar 

  122. T. Xie, T. Saleh, P. Rossi, C.G. Kalodimos, Conformational states dynamically populated by a kinase determine its function. Science 370, 189 (2020). https://doi.org/10.1126/science.abc2754

  123. M.K. Joshi, R.A. Burton, H. Wu, A.M. Lipchik, B.P. Craddock, H. Mo, L.L. Parker, W.T. Miller, C.B. Post, Substrate binding to Src: a new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics. Protein Sci. 29, 350–359 (2020)

    Article  Google Scholar 

  124. S. Swendeman, B. Nagar, D. Wisniewski, A. Strife, C. Lambek, C. Liu, D. Veach, W. Bornmann, J. Kuriyan, B. Clarkson, Crystal structures of the c-Abl tyrosine kinase domain in complex with STI-571 and a novel Bcr-Abl inhibitor, PD1173955. Clin. Cancer Res. 7, 3768s–3768s (2001)

    Google Scholar 

  125. F. Pontiggia, D.V. Pachov, M.W. Clarkson, J. Villali, M.F. Hagan, V.S. Pande, D. Kern, Free energy landscape of activation in a signalling protein at atomic resolution. Nat. Commun. 6, 7284 (2015)

    Article  ADS  Google Scholar 

  126. C. Wilson, R.V. Agafonov, M. Hoemberger, S. Kutter, A. Zorba, J. Halpin, V. Buosi, R. Otten, D. Waterman, D.L. Theobald, D. Kern, Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug’s mechanism. Science 347, 882–886 (2015)

    Article  ADS  Google Scholar 

  127. S. Yang, L. Blachowicz, L. Makowski, B. Roux, Multidomain assembled states of Hck tyrosine kinase in solution. Proc. Natl. Acad. Sci. U.S.A. 107, 15757–15762 (2010)

    Article  ADS  Google Scholar 

  128. C.L. McClendon, A.P. Kornev, M.K. Gilson, S.S. Taylor, Dynamic architecture of a protein kinase. Proc. Natl. Acad. Sci. U.S.A. 111, E4623–E4631 (2014)

    Article  ADS  Google Scholar 

  129. J.H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J.D. Chodera, C. Schutte, F. Noe, Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011)

    Article  ADS  Google Scholar 

  130. F. Nuske, H. Wu, J.H. Prinz, C. Wehmeyer, C. Clementi, F. Noe, Markov state models from short non-equilibrium simulations-analysis and correction of estimation bias. J. Chem. Phys. 146 (2017)

  131. M. Weber, K. Fackeldey, C. Schutte, Set-free Markov state model building. J. Chem. Phys. 146, 124133 (2017). https://doi.org/10.1063/1.4978501

  132. I. Buch, T. Giorgino, G. De Fabritiis, Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 108, 10184–10189 (2011)

    Article  ADS  Google Scholar 

  133. N. Plattner, F. Noe, Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat. Commun. 6, 7653 (2015)

    Article  ADS  Google Scholar 

  134. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  Google Scholar 

  135. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell Jr., CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010)

    Google Scholar 

  136. L. Huang, B. Roux, Automated force field parameterization for non-polarizable and polarizable atomic models based on target data. J. Chem. Theory Comput. 9, 3543–3556 (2013). https://doi.org/10.1021/ct4003477

  137. J. Singh, R.C. Petter, T.A. Baillie, A. Whitty, The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011)

    Article  Google Scholar 

  138. S. Klus, A. Bittracher, I. Schuster, C. Schutte. A kernel-based approach to molecular conformation analysis. J. Chem. Phys. 149, 244109 (2018). https://doi.org/10.1063/1.5063533

  139. E. Rosta, G. Hummer, Free energies from dynamic weighted histogram analysis using unbiased Markov state model. J. Chem. Theory Comput. 11, 276–285 (2015)

    Article  Google Scholar 

  140. A.S.J.S. Mey, H. Wu, F. Noe, xTRAM: estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states. Phys. Rev. X 4, 041018 (2014)

    Google Scholar 

  141. H. Wu, A.S. Mey, E. Rosta, F. Noe, Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states. J. Chem. Phys. 141, 214106 (2014)

    Article  ADS  Google Scholar 

  142. J. Wang, S. Chmiela, K.R. Muller, F. Noe, C. Clementi, Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach. J. Chem. Phys. 152, 194106 (2020)

    Article  ADS  Google Scholar 

  143. T.O.F. Conrad, M. Genzel, N. Cvetkovic, N. Wulkow, 1286 A. Leichtle, J. Vybiral, G. Kutyniok, C. Schutte. Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data. BMC Bioinform. 18, 160 (2017). https://doi.org/10.1186/s12859-017-1565-4

  144. G.M. Rotskoff, E. Vanden-Eijnden, Dynamical computation of the density of states and Bayes factors using nonequilibrium importance sampling. Phys. Rev. Lett. 122, 150602 (2019)

    Article  ADS  Google Scholar 

  145. J. Wang, S. Olsson, C. Wehmeyer, A. Perez, N.E. Charron, G. de Fabritiis, F. Noe, C. Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci. 5, 755–767 (2019)

    Article  Google Scholar 

  146. Bittracher, A., Klus, S., Hamzi, B. et al. Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds. J. Nonlinear Sci. 31, 3 (2021). https://doi.org/10.1007/s00332-020-09668-z

  147. A.C. Pan, B. Roux, Building Markov state models along pathways to determine free energies and rates of transitions. J. Chem. Phys. 129, 064107 (2008)

    Article  ADS  Google Scholar 

  148. P.M. Ung, R. Rahman, A. Schlessinger, Redefining the protein kinase conformational space with machine learning. Cell Chem. Biol. 25, 916-924 e912 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Cancer Institute (NCI) of the National Institutes of Health (NIH) through grant R01-CAO93577.

Author information

Authors and Affiliations

Authors

Contributions

TT and BR wrote the paper.

Corresponding author

Correspondence to Benoît Roux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, T., Roux, B. Tyrosine kinases: complex molecular systems challenging computational methodologies. Eur. Phys. J. B 94, 203 (2021). https://doi.org/10.1140/epjb/s10051-021-00207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00207-7

Navigation