Skip to main content
Log in

Explosive synchronization caused by optimizing synchrony of coupled phase oscillators on complex networks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

A Correction to this article was published on 09 February 2022

This article has been updated

Abstract

We optimize synchrony in networks of heterogeneous phase oscillators. By analyzing the eigenvalues of the Jacobian matrix at full synchronization, two structure indicators related to the critical coupling strength are constructed. When the network structure is fixed, the current scheme of optimization on the frequency picking and allocation converts the synchronization from a second-order continuous to a first-order discontinuous phase transition. When the frequency distribution is deterministic and uniform, the obtained best network structure has a critical coupling strength that approaches the theoretical minimum value. It is found that the requirement for explosive synchronization is consistent with that for optimizing synchrony, which requires that the frequency difference between connected nodes be large, and the distance from the node to the average frequency is proportional to the node degree. The connection between optimization and explosive synchronization deepens our understanding of the latter and provides an effective way of control.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article. All data are given by numerical calculation, which is described in detail in the manuscript.]

Change history

References

  1. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    MATH  Google Scholar 

  2. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, England, 2001)

    MATH  Google Scholar 

  3. Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975)

  4. S.H. Strogatz, Phys. D 143, 1 (2000)

    MathSciNet  Google Scholar 

  5. J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

  6. F. Dörfler, F. Bullo, Automatica 50, 1539 (2014)

    Google Scholar 

  7. F.A. Rodrigues, T.K.D.M. Peron, P. Ji, J. Kurths, Phys. Rep. 610, 1 (2016)

    ADS  MathSciNet  Google Scholar 

  8. I.Z. Kiss, Y. Zhai, J.L. Hudson, Science 296, 1676 (2002)

    ADS  Google Scholar 

  9. J. Buck, Quart. Rev. Biol. 63, 265 (1988)

    Google Scholar 

  10. R.A. Oliva, S.H. Strogatz, Int. J. Bifurcat. Chaos 11, 2359 (2001)

    Google Scholar 

  11. J. Javaloyes, M. Perrin, A. Politi, Phys. Rev. E 78, 011108 (2008)

    ADS  Google Scholar 

  12. G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)

    ADS  Google Scholar 

  13. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012)

    ADS  Google Scholar 

  14. F. Dörfler, M. Chertkov, F. Bullo, Proc. Natl. Acad. Sci. U.S.A. 110, 2005 (2013)

    ADS  Google Scholar 

  15. K. Wiesenfeld, J.W. Swift, Phys. Rev. E 51, 1020 (1995)

    ADS  Google Scholar 

  16. K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. Lett. 76, 404 (1996)

    ADS  Google Scholar 

  17. M. Timme, Phys. Rev. Lett. 98(22), 224101 (2007)

    ADS  Google Scholar 

  18. L. Arola-Fernández, A. Díaz-Guilera, A. Arenas, Phys. Rev. E 97(6), 060301 (2018). https://doi.org/10.1103/PhysRevE.97.060301

    Article  ADS  Google Scholar 

  19. L. Buzna, S. Lozano, A. Diaz-Guilera, Phys. Rev. E. 80, 066120 (2009)

    ADS  Google Scholar 

  20. D. Kelly, G.A. Gottwald, Chaos 21, 025110 (2011)

    ADS  MathSciNet  Google Scholar 

  21. P.S. Skardal, D. Taylor, J. Sun, Phys. Rev. Lett. 113, 144101 (2014)

    ADS  Google Scholar 

  22. R.M. D’Souza, J. Gómez-Gardeñes, S. Gómez, J. Nagler, A. Arenas, Advances In Physics 68(3), 123–223 (2019)

  23. P.S. Skardal, A. Arenas, Science Advances 1(7), e1500339 (2015)

    ADS  Google Scholar 

  24. R.S. Pinto, A. Saa, Phys. Rev. E. 92, 062801 (2015)

    ADS  MathSciNet  Google Scholar 

  25. J. Gómez-Gardeñes, S. Gómez, A. Arenas, Y. Moreno, Phys. Rev. Lett. 106, 062801 (2011)

    Google Scholar 

  26. H. Chen, G. He, F. Huang, C. Shen, Z. Hou, Chaos 23, 033124 (2013)

    ADS  Google Scholar 

  27. D. Pazó, Phys. Rev. E. 72, 046211 (2005)

    ADS  MathSciNet  Google Scholar 

  28. I. Leyva, I. Sendiña-Nadal, J.A. Almendral, A. Navas, S. Olmi, S. Boccaletti, Phys. Rev. E 88, 042808 (2013)

    ADS  Google Scholar 

  29. W. Zhou, L. Chen, H. Bi, X. Hu, Z. Liu, S. Guan, Phys. Rev. E 92, 012812 (2015)

    ADS  MathSciNet  Google Scholar 

  30. X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015)

    ADS  Google Scholar 

  31. P. Khanra, P. Kundu, C. Hens, P. Pal, Phys. Rev. E 98, 052315 (2018)

    ADS  Google Scholar 

  32. S. Jalan, V. Rathore, A.D. Kachhvah, A. Yadav, Phys. Rev. E 99, 062305 (2019)

    ADS  Google Scholar 

  33. D. Soriano-Panos, Q. Guo, V. Latora, J. Gomez-Gardenes, Phys. Rev. E 99, 062311 (2019)

    ADS  Google Scholar 

  34. C. Xu, J. Gao, H. Xiang, W. Jia, S. Guan, Z. Zheng, Phys. Rev. E 94, 062204 (2016)

    ADS  Google Scholar 

  35. P. Ji, T. K. DM. Peron, F. A. Rodrigues, and J. Kurths, Phys. Rev. E 90, 062810 (2014)

  36. A. Navas, J.A. Villacorta-Atienza, I. Leyva, J.A. Almendral, I. Sendiña-Nadal, S. Boccaletti, Phys. Rev. E 92, 062820 (2015)

    ADS  Google Scholar 

  37. S.G. Yang, J.I. Park, B.J. Kim, Phys. Rev. E 102, 052207 (2020)

    ADS  MathSciNet  Google Scholar 

  38. R.S. Pinto, A. Saa, Phys. Rev. E 91, 022818 (2015)

    ADS  Google Scholar 

  39. V. Avalos-Gaytán, J.A. Almendral, I. Leyva, F. Battiston, V. Nicosia, V. Latora, S. Boccaletti, Phys. Rev. E 97, 042301 (2018)

    ADS  Google Scholar 

  40. Y. Liu, J. Kurths, Phys. Rev. E 100, 012312 (2019)

    ADS  Google Scholar 

  41. I. Sendiña-Nadal, I. Leyva, A. Navas, J.A. Villacorta-Atienza, J.A. Almendral, Z. Wang, S. Boccaletti, Phys. Rev. E 91, 032811 (2015)

    ADS  Google Scholar 

  42. T. K. DM. Peron and F. A. Rodrigues, Phys. Rev. E 86, 016102 (2012)

  43. L. Cao, C. Tian, Z. Wang, X. Zhang, Z. Liu, Phys. Rev. E 97, 022220 (2018)

    ADS  Google Scholar 

  44. E.J. Friedman, A.S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009)

    ADS  Google Scholar 

  45. F. Radicchi, S. Fortunato, Phys. Rev. Lett. 103, 168701 (2009)

    ADS  Google Scholar 

  46. Y.S. Cho, J.S. Kim, J. Park, B. Kahng, D. Kim, Phys. Rev. Lett. 103, 135702 (2009)

    ADS  Google Scholar 

  47. C. Xu, J. Gao, Y. Sun, X. huang, and Z. Zheng, Sci. Rep. 5. 12039 (2015)

  48. P. Kundu, P. Khanra, C. Hens, P. Pal, Phys. Rev. E 96, 052216 (2017)

    ADS  MathSciNet  Google Scholar 

  49. X. Zhang, X. Hu, J. Kurths, Z. Liu, Phys. Rev. E. 88, 010802(R) (2013)

    ADS  Google Scholar 

  50. X. Dai, X. Li, H. Guo, D. Jia, M. Perc, P. Manshour, Z. Wang, S. Boccaletti, Phys. Rev. Lett. 125, 194101 (2020)

    ADS  MathSciNet  Google Scholar 

  51. C. Xu, J. Gao, S. Boccaletti, Z. Zheng, S. Guan, Phys. Rev. E. 100, 012212 (2019)

    ADS  Google Scholar 

  52. L. Arola-Fernández, P.S. Skardal, A. Arenas, Chaos 31, 061105 (2021). https://doi.org/10.1063/5.0053837

    Article  ADS  Google Scholar 

  53. M.E.J. Newman, D.J. Watts, Phys. Rev. E. 60, 7332 (1999)

    ADS  Google Scholar 

  54. W. Chen, W. Liu, Y. Lan, J. Xiao, Commun Nonlinear Sci Numer Simul 70, 271–281 (2019)

    ADS  MathSciNet  Google Scholar 

  55. Y. Wu, J. Xiao, G. Hu, M. Zhan, Epl 97, 40005 (2012)

    ADS  Google Scholar 

  56. E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra; Mc-Graw-Hill: New York, 1955; Dover Publications: New York, 1980

  57. S. Califano, Vibrational States (Wiley, New York, 1976), pp. 95–96

    Google Scholar 

  58. R.A. Marcus, J. phys. Chem. A 105(12), 2612–2616 (2001)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant no. 11775034) and the Fundamental Research Funds for the Central Universities with contract number 2019XD-A10.

Author information

Authors and Affiliations

Authors

Contributions

WC and SW performed the simulations and analyzed the results. YL, WL and JX designed the work and discussed the results. WC and JX designed and wrote the paper. All authors contributed to the scientific discussions and the preparation of the manuscript, and approved the final version of the manuscript.

Corresponding author

Correspondence to Wei Chen.

Additional information

The original online version of this article was revised to correct references 18 and 52.

Appendix A: Derivation of structural index \(S_1\), \(S_2\)

Appendix A: Derivation of structural index \(S_1\), \(S_2\)

First of all, we need to get the phase \(\varvec{\theta }\) of the nodes in the fully synchronized state [21]. When the coupling strength k is large enough, \(\theta _j-\theta _i \approx 0\) , Eq.  (1) can be transformed into

$$\begin{aligned} \bar{\omega }=\omega _{i}+\frac{k}{\bar{d}}\sum _{j=1}^{N} A_{ij} (\theta _j-\theta _i) ,i=1,2...,N, \end{aligned}$$
(A.1)

which can be written in a matrix form:

$$\begin{aligned} \varvec{\varOmega }=\frac{k}{\bar{d}} L \varvec{\theta }, \end{aligned}$$
(A.2)

where \(\varOmega _i = \omega _i - \bar{\omega }\), L is the Laplacian matrix of A, the eigenvalues and eigenvectors of L are \(\gamma _i,\varvec{u}^i\) respectively. If the network is connected, then the eigenvalues of L satisfy \(\gamma _N>= \cdots>=\gamma _2 > \gamma _1 = 0\), and the generalized inverse matrix of L is \(L^\dagger =\sum _{i=2}^{N}\gamma _i^{-1} \varvec{u}^i \varvec{u}^{iT}\). According to Eq. (4):

$$\begin{aligned} \varvec{\theta } = \frac{\bar{d}}{k} L^\dagger \varvec{\varOmega }. \end{aligned}$$
(A.3)

Let \(\varvec{\phi } = \bar{d} L^\dagger \varvec{\varOmega }\) , then \(\varvec{\theta } = \varvec{\phi }/k\).

Let \(G_{ij}=A_{ij}\cos (\theta _j-\theta _i), G_{ii}=-\sum _{j=1}^{N}{A_{ij}\cos (\theta _j-\theta _i)}\), then the Jacobian matrix J of Eq. (1) is \(J = {k}/{\bar{d}}G\). Because \({k}/{\bar{d}} > 0\), the positive and negative signs of the eigenvalues of matrix J and G are the same, so we can use the eigenvalues of G to judge the stability of the system. Let \(\lambda _i,\varvec{v}^i\) be eigenvalues and eigenvectors of matrix G. When the coupling strength \(k = k_0\) is large enough, the phase \(\varvec{\theta }(k_0) = \varvec{\phi }/k_0\), when the coupling strength \(k = k_0 + \varepsilon \)(\(|\varepsilon | \ll 1\)), the phase \(\varvec{\theta }(k_0 + \varepsilon ) ={\varvec{\phi }}/{(k_0 + \varepsilon )}\), and the phase difference \(\varDelta \varvec{\theta }={\varvec{\phi }}/{(k_0 + \varepsilon )}-{\varvec{\phi }}/{k_0}= {-\varepsilon \varvec{\phi }}/{(k_0(k_0+\varepsilon ))} \approx -\varepsilon \varvec{\phi }/k_0^2\). We carry out a perturbation analysis [56,57,58] by writing

$$\begin{aligned}&G(k_0+\varepsilon ) = G^{(0)} + \varepsilon G^{(1)} + \varepsilon ^2 G^{(2)} + \cdots , \end{aligned}$$
(A.4)
$$\begin{aligned}&\lambda _l(k_0+\varepsilon ) = \lambda _l^{(0)} + \varepsilon \lambda _l^{(1)} + \cdots , l=1,2,\cdots ,N, \end{aligned}$$
(A.5)

where \(G^{(1)}_{ij}\approx A_{ij}\sin ((\phi _j-\phi _i)/k_0)(\phi _j-\phi _i)/k_0^2, i \ne j\), and \(G^{(1)}_{ii}\approx -\sum _{j=1}^{N}{A_{ij}\sin ((\phi _j-\phi _i)/k_0)(\phi _j-\phi _i)/k_0^2}\). When the coupling strength \(k = k_0\) is large, \(\theta _j \approx \theta _i\), \(cos(\theta _j-\theta _i) \approx 1 \), so \(G^{(0)} = G(k_0) \approx -L \), eigenvalues and eigenvectors of matrix G: \(\lambda _l \approx - \gamma _l, \varvec{v}^l \approx \varvec{u}^l\), according to perturbation theory:

$$\begin{aligned}&\lambda _l^{(1)}(k_0)=\varvec{v}^{lT} (k_0) G^{(1)} \varvec{v}^l(k_0) \approx \varvec{u}^{lT} G^{(1)} \varvec{u}^l \nonumber \\&\approx \sum _{i=1}^{N}\sum _{j=1}^{N}(u_i^l(u_j^l-u_i^l)A_{ij} \frac{\phi _j-\phi _i}{k_0^2} \sin (\frac{\phi _j-\phi _i}{k_0})) \nonumber \\&\approx \sum _{i=1}^{N}\sum _{j=1}^{N}(u_i^l(u_j^l-u_i^l)A_{ij}\sum _{s=1}^{\infty }{ \frac{(-1)^{s+1}(\phi _j-\phi _i)^{2s}}{(2s-1)! k_0^{(2s+1)}}}), \end{aligned}$$
(A.6)

where \(\sum _{s=1}^{\infty }{ {(-1)^{s+1}(\phi _j-\phi _i)^{2s}}/{((2s-1)! k_0^{(2s+1)})}}\) is the Taylor expansion of \({(\phi _j-\phi _i)} \sin ({(\phi _j-\phi _i)}/{k_0}))/{k_0^2}\) near 0. According to Eq. (A.5): \(\lambda _l^{(1)}(k_0)=(\lambda _l(k_0+\varepsilon )-\lambda _l(k_0))/ \varepsilon -\varepsilon \lambda _l^{(2)}-\varepsilon ^2\lambda _l^{(3)}-\cdots \), when \(\varepsilon \rightarrow 0\), \(\lambda _l^{(1)}(k_0) = \dot{\lambda _l}(k_0)\). Then \(\lambda _l(k)\) can be obtained by integrating \(\lambda _l^{(1)}(k)\):

$$\begin{aligned} \lambda _l=\int \dot{\lambda _l}\mathrm {d}k=\int \lambda _l^{(1)}\mathrm {d}k = -\gamma _l+\sum _{s=1}^{\infty }{(-1)^{s+1}\frac{a_s^l}{ k^{2s}}}, \end{aligned}$$
(A.7)

where \(a_s^l =\sum _{i=1}^{N}\sum _{j=1}^{N}(u_i^l(u_j^l-u_i^l)A_{ij}\frac{(\phi _j-\phi _i)^{2s}}{(2s)!})\),\(\gamma _l\) is the eigenvalue of L. With the increment of s, \(a_s^l\) will quickly converge to 0, so we only need to calculate of the first two terms.

The critical coupling \(k_c\) corresponds to the zero crossing point of \(\lambda _l\), so scaling \(\lambda _l\) will not affect the \(k_c\). For the convenience of comparing \(\lambda _l\) of different l, the eigenvalue \(\lambda _l\) is normalized:

$$\begin{aligned} \tilde{\lambda _l}=\frac{\lambda _l}{\gamma _l}\approx -1+\sum _{s=1}^{\infty }{(-1)^{s+1} \frac{b_s^l}{k^{2s}}} \approx -1+ \frac{b_1^l}{k^2} - \frac{b_2^l}{k^4}, \end{aligned}$$
(A.8)

where \(b_s^l = a_s^l / \gamma _l\). When k decreases from infinity(only a larger value is needed, such as \(10k_c\)) to critical coupling strength \(k_c\), \(\mathop {max}\limits _{l}(\tilde{\lambda _l})\) increases from \(-1\) to 0. If the change trend of \(\tilde{\lambda _l}\) is slower, the coupling strength k is smaller when \(\tilde{\lambda _l}\) reaches 0, and the critical coupling strength \(k_c\) is smaller. When k is large, \(b_1^l\) has far more influence on \(\tilde{\lambda _l}\) then \(b_2^l\), so only \(b_1^l\) is analyzed, then the critical coupling strength \(k_c\) can be reduced as long as \(\mathop {max}\limits _{l}(b_1^l)\) is reduced.

However, the form of \(\mathop {max}\limits _{l}(b_1^l)\) is very complicated. Let us make a further treatment of \(\mathop {max}\limits _{l}(b_1^l)\) for simplicity. Let \(B_{ij}=A_{ij}(\phi _j-\phi _i)^2\), \(C=diag(\sum _{j=1}^{N}B_{1j},\cdots ,\sum _{j=1}^{N}B_{Nj})-B\), then

$$\begin{aligned} b_1^l=\frac{a_1^l}{\gamma _l}=\frac{\varvec{u}^{lT} C \varvec{u}^l}{2\gamma _l}. \end{aligned}$$
(A.9)

Let the mean square of the difference \(\phi \) of the connected nodes be set as follows:

$$\begin{aligned} \bar{\delta }=\frac{1}{N\bar{d}}\sum _{i=1}^{N}\sum _{j=1}^{N}{A_{ij}(\phi _j-\phi _i)^2} =\frac{2}{N\bar{d}}{\varvec{\phi }}^T L \varvec{\phi }. \end{aligned}$$
(A.10)

Let \((\phi _j-\phi _i)^2 = \bar{\delta }+\delta _{ij}\), \(H_{ij}=A_{ij}\delta _{ij}\), \(D=diag(\sum _{j=1}^{N}H_{1j},\cdots , \sum _{j=1}^{N}H_{Nj})-H\), then \(C=\bar{\delta }L+D\). From Eq. (A.9), we can get that

$$\begin{aligned} b_1^l=\frac{\varvec{u}^{lT} C \varvec{u}^l}{2\gamma _l}=\frac{\varvec{u}^{lT} \bar{\delta }L\varvec{u}^l+\varvec{u}^{lT} D\varvec{u}^l}{2\gamma _l} =\frac{\bar{\delta }}{2}+\frac{\varvec{u}^{lT} D\varvec{u}^l}{2\gamma _l}. \end{aligned}$$
(A.11)

So \(\mathop {max}\limits _{l}(b_1^l)={\bar{\delta }}/{2}+\mathop {max}\limits _{l}({\varvec{u}^{lT} D\varvec{u}^l}/(2\gamma _l))\). Therefore, to reduce the critical coupling strength, only \(\bar{\delta }\), \(\mathop {max}\limits _{l}({\varvec{u}^{lT} D\varvec{u}^l}/(2\gamma _l))\) can be reduced. \(\bar{\delta }\) and \(\mathop {max}\limits _{l}({\varvec{u}^{lT} D\varvec{u}^l}/(2\gamma _l))\) are further discussed below.

Consider \(\bar{\delta }\) first, let \(\varvec{\varOmega }=\sum _{j=1}^{N}{\alpha _j \varvec{u}^j}\), then \(\alpha _1=\varvec{\varOmega }^T \varvec{u}^1=\sum _{j=1}^{N}{\varOmega _j/\sqrt{N}}=0\), \(\varvec{\phi }=\bar{d}L^\dagger \varvec{\varOmega }=\sum _{j=2}^{N}{\alpha _j\varvec{u}^j/\gamma _j}\), according to Eq. (A.10):

$$\begin{aligned} \bar{\delta } =\frac{2}{N\bar{d}}{\varvec{\phi }}^T L \varvec{\phi }=\frac{2}{N\bar{d}}\sum _{j=2}^{N}\frac{\alpha _j^2}{\gamma _j}. \end{aligned}$$
(A.12)

Because \(\gamma _N>= \cdots>=\gamma _2 > \gamma _1 = 0\). To make \(\sum _{j=2}^{N}{\alpha _j^2}/{\gamma _j}\) smaller, we only need to make \(\sum _{j=2}^{N}{\alpha _j^2 \gamma _j}\) larger, As \(\gamma _j\) and \(\varvec{u}^j\) are the eigenvalues and eigenvectors of L, respectively, so \(\sum _{j=2}^{N}{\alpha _j^2 \gamma _j}=\varvec{\varOmega }^T L \varvec{\varOmega }=0.5\sum _{i=1}^{N}\sum _{j=1}^{N}{A_{ij}(\omega _i-\omega _j)^2}\). Therefore, to make \(\bar{\delta }\) smaller, nodes with larger frequency difference should be connected as much as possible. So we get the first structural indicator \(S_1\), which is the average value of the frequency difference of the connected nodes:

$$\begin{aligned} S_1=\frac{1}{N\bar{d}}\sum _{i=1}^{N}\sum _{j=1}^{N}{A_{ij}(\omega _i-\omega _j)^2} =\frac{2}{N\bar{d}}\sum _{j=2}^{N}{\alpha _j^2 \gamma _j}.\qquad \end{aligned}$$
(A.13)

When \(S_1\) is larger, \(\bar{\delta }\) is smaller.

Next, let us consider \(\mathop {max}\limits _{l}({\varvec{u}^{lT} D\varvec{u}^l}/(2\gamma _l))\), to make \(\mathop {max}\limits _{l}({\varvec{u}^{lT} D\varvec{u}^l}/(2\gamma _l))\) small, every element in D should be as close as possible to 0, that is, the difference value of the connected nodes \(\phi \) is approximately equal, let \(|\phi _j-\phi _i|\approx \varTheta , A_{ij}=1\). When the coupling strength k is large, the system is completely synchronous state, \(\dot{\theta _i}(t) = \bar{\omega }\), and Eq. (1) can be reduced to

$$\begin{aligned} \varOmega _i=\frac{k}{\bar{d}}\sum _{j=1}^{N}{A_{ij}\sin (\phi _j-\phi _i)}= \frac{k}{\bar{d}}d_ir_i\sin (\varPsi _i-\phi _i),\qquad \end{aligned}$$
(A.14)

where \(r_i e^{I\varPsi _i}=({1}/{d_i})\sum _{j=1}^{N}{A_{ij}e^{I\phi _j}}, I=\sqrt{-1}\). When \(S_1\) is large, the frequency difference of connected nodes is large, and \(\phi _j\) of nodes connected with ith node are distributed on the same side of \(\phi _i\). Otherwise, if \(\phi _{j_1}\) and \(\phi _{j_2}\) are distributed on both sides of \(\phi _i\) and \(S_1\) is larger, \(A_{j_1 j_2}=1\) and \(|\phi _{j_1}-\phi _{j_2}| \approx 2|\phi _{j_1}-\phi _i| \approx 2\varTheta \) are contradictory to the former condition \(|\phi _j-\phi _i|\approx \varTheta , A_{ij}=1\). So \(|\sin (\varPsi _i-\phi _i)|=\bar{d}|\varOmega _i|/(k d_i r_i) \approx \sin (\varTheta ) \approx \bar{d}|\varOmega _j|/(k d_j r_j)\), while \(r_i\), \(r_j\) is approximately equal during synchronization, \(\bar{d}|\varOmega _i|/d_i \approx \bar{d}|\varOmega _j|/d_j\), that is, the distance from node frequency to average frequency is proportional to node degree. Let \(\mu _i=\bar{d}|\varOmega _i|/d_i\), to make \(\mu _i\) approximate, we only need to make \(\mathop {max}\limits _{i}(\mu _i)\) as small as possible. So we get the second structural indicator \(S_2\):

$$\begin{aligned} S_2=\mathop {max}\limits _{i}(\mu _i)=\mathop {max}\limits _{i}(\bar{d}|\varOmega _i|/d_i).\qquad \end{aligned}$$
(A.15)

When \(S_1\) is large and \(S_2\) is small, \(\mathop {max}\limits _{l}({\varvec{u}^{lT} D\varvec{u}^l}/(2\gamma _l))\) can be small. Therefore, we obtain two structural indices \(S_1\) and \(S_2\) from Eq. (A.13) and Eq. (A.15). When \(S_1\) is larger and \(S_2\) is smaller, the critical coupling strength \(k_c\) is smaller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, S., Lan, Y. et al. Explosive synchronization caused by optimizing synchrony of coupled phase oscillators on complex networks. Eur. Phys. J. B 94, 205 (2021). https://doi.org/10.1140/epjb/s10051-021-00201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00201-z

Navigation