Skip to main content
Log in

Evolution of the Berry phase and topological properties of a band deformed Chern insulator

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Here we study the evolution of the Berry phase (\(\Phi _{B}\)) and the topological properties of a Chern insulator in the presence of a band deformation en route from a Dirac dispersion to an anisotropic Dirac one. Such a scenario can be achieved by tuning one of the hopping amplitudes among a pair of sites in a honeycomb lattice (say, \(t_{1}\)) with respect to those corresponding to the other two pairs (t). The anisotropic Dirac dispersion characterized by different velocities corresponding to different directions in the k-space is further confirmed by computing the energy (E) dependence of the cyclotron mass which changes from being proportional to \(\sqrt{E}\) in the absence of the Haldane flux to linearly in E in its presence. At \(t_{1} = 2t\) (known as the semi-Dirac limit), the two Dirac points merge at an intermediate \(\mathbf {M}\) point where both the energy gap and the Berry phase vanish in the absence of a Haldane flux, whereas the presence of a flux yields a non-zero Berry phase, even though the spectrum still remains gapless. Moreover, in the absence of the Haldane flux, the Berry phase remains insensitive to the energy of the particle, while in its presence, \(\Phi _{B}\) is altered corresponding to different radii of the paths traversed by the particle in the k-space. As \(t_{1}\) exceeds a value greater than 2t, a gap re-opens in the energy spectrum, and the Berry phase vanishes even in presence of a Haldane flux indicating the onset of a transition from a topological phase to a trivial one. This transition is further supported by the existence of the edge modes that are present only in the topological regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:The result and data presented in this work can be reproduced using the procedures described in the text.]

References

  1. M.V. Berry, Proc. R. Soc. A 392, 45 (1984)

    ADS  Google Scholar 

  2. D.J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, Hoboken, 1995)

    Google Scholar 

  3. K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  4. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  Google Scholar 

  5. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237–240 (2014)

    Article  ADS  Google Scholar 

  6. H.S. Kim, H.Y. Kee, NPJ Quant Mater. 2, 20 (2017)

    Article  ADS  Google Scholar 

  7. T. Andrijauskas, E. Anisimovas, M. Račiūnas, A. Mekys, V. Kudriašov, I. B. Spielman, and G. Juzeliūnas., Phys. Rev. A 92, 033617 (2015)

  8. F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Phys. Rev. B 81, 035411 (2010)

    Article  ADS  Google Scholar 

  9. F. Liu, P. Ming, J. Li, Phys. Rev. B 76, 064120 (2007)

    Article  ADS  Google Scholar 

  10. K.S. Kim, Y. Zhao, H. Jang, S. Lee, K. Yoon, M. Jong, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706710 (2009)

    Google Scholar 

  11. Y. Hasegawa, R. Konno, H. Nakano, M. Kohmoto, Phys. Rev. B 74, 033413 (2006)

    Article  ADS  Google Scholar 

  12. G. Montambaux, F. Piéchon, J.-N. Fuchs, M.O. Goerbig, Phys. Rev. B 80, 153412 (2009)

    Article  ADS  Google Scholar 

  13. P. Dietl, F. Piéchon, G. Montambaux, Phys. Rev. Lett. 100, 236405 (2008)

    Article  ADS  Google Scholar 

  14. S. Banerjee, R.R.P. Singh, V. Pardo, W.E. Pickett, Phys. Rev. Lett. 103, 016402 (2009)

    Article  ADS  Google Scholar 

  15. V. Pardo, W.E. Pickett, Phys. Rev. Lett. 102, 166803 (2009)

    Article  ADS  Google Scholar 

  16. V. Pardo, W.E. Pickett, Phys. Rev. B 81, 035111 (2010)

    Article  ADS  Google Scholar 

  17. A.N. Rudenko, S. Yuan, M.I. Katsnelson, Phys. Rev. B 92, 085419 (2015)

    Article  ADS  Google Scholar 

  18. C. Dutreix, E.A. Stepanov, M.I. Katsnelson, Phys. Rev. B 92, 241404(R) (2016)

    Article  ADS  Google Scholar 

  19. A.S. Rodin, A. Carvalho, A.H. Castro Neto, Phys. Rev. Lett. 112, 176801 (2014)

    Article  ADS  Google Scholar 

  20. J. Guan, Z. Zhu, D. Tománek, Phys. Rev. Lett. 113, 046804 (2014)

    Article  ADS  Google Scholar 

  21. C. Zhong, Y. Chen, Y. Xie, Y.-Y. Sun, S. Zhang, Phys. Chem. Chem. Phys. 19, 3820 (2017)

    Article  Google Scholar 

  22. Y. Suzumura, T. Morinari, F. Piéchon, J. Phys. Soc. Jpn. 82, 023708 (2013)

    Article  ADS  Google Scholar 

  23. Q. Chen, L. Du, G. Fiete, Phys. Rev. B 97, 035422 (2018)

    Article  ADS  Google Scholar 

  24. P. Sinha, S. Murakami, S. Basu, Phys. Rev. B 102, 085416 (2020)

    Article  ADS  Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  26. O. Ciftja, V. Livingston, E. Thomas, Am. J. Phys. 85, 359 (2017)

    Article  ADS  Google Scholar 

  27. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  28. S. Bhandari, G.-H. Lee, A. Klales, K. Watanabe, T. Taniguchi, E. Heller, P. Kim, M. Westervelt, Nano Lett. 16(3), 1690–1694 (2016)

    Article  ADS  Google Scholar 

  29. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  30. K. Zieglar, A. Sinner, EPL 119, 27001 (2017)

    Article  ADS  Google Scholar 

  31. D.J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  32. S. Mondal, P. Kapri, B. Dey, T.K. Ghosh, S. Basu, J. Phys.: Condens. Matter 33, 225504 (2021)

    ADS  Google Scholar 

  33. C.-H. Park, N. Marzari, Phys. Rev. B 84, 205440 (2011)

    Article  ADS  Google Scholar 

  34. T. Thonhauser, D. Vanderbilt, Phys. Rev. B 74, 235111 (2006)

    Article  ADS  Google Scholar 

  35. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally to the paper.

Corresponding author

Correspondence to Sayan Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Basu, S. Evolution of the Berry phase and topological properties of a band deformed Chern insulator. Eur. Phys. J. B 94, 207 (2021). https://doi.org/10.1140/epjb/s10051-021-00190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00190-z

Navigation