Skip to main content
Log in

Stabilizing spiral structures and population diversity in the asymmetric May–Leonard model through immigration

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the induction and stabilization of spiral structures for the cyclic three-species stochastic May–Leonard model with asymmetric predation rates on a spatially inhomogeneous two-dimensional toroidal lattice using Monte Carlo simulations. In an isolated setting, strongly asymmetric predation rates lead to rapid extinction from coexistence of all three species to a single surviving population. Even for weakly asymmetric predation rates, only a fraction of ecologies in a statistical ensemble manages to maintain full three-species coexistence. However, when the asymmetric competing system is coupled via diffusive proliferation to a fully symmetric May–Leonard patch, the stable spiral patterns from this region induce transient plane-wave fronts and ultimately quasi-stationary spiral patterns in the vulnerable asymmetric region. Thus, the endangered ecological subsystem may effectively become stabilized through immigration from even a much smaller stable region. To describe the stabilization of spiral population structures in the asymmetric region, we compare the increase in the robustness of these topological defects at extreme values of the asymmetric predation rates in the spatially coupled system with the corresponding asymmetric May–Leonard model in isolation. We delineate the quasi-stationary nature of coexistence induced in the asymmetric subsystem by its diffusive coupling to a symmetric May–Leonard patch, and propose a (semi-)quantitative criterion for the spiral oscillations to be sustained in the asymmetric region.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data are presented within the figure files.]

References

  1. R.M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 1973)

    Google Scholar 

  2. J.M. Smith, Models in Ecology (Cambridge University Press, Cambridge, 1974)

    MATH  Google Scholar 

  3. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  4. J.D. Murray, Mathematical Biology I. An Introduction (Springer, New York, 2002)

    Book  Google Scholar 

  5. D. Neal, Introduction to Population Biology (Cambridge University Press, Cambridge, 2018)

    Book  Google Scholar 

  6. S.E. Kingsland, Modeling Nature (The University of Chicago Press, Chicago, 1985)

    Google Scholar 

  7. S. Schuster, J.U. Kreft, A. Schröter, T. Pfeiffer, J. Biol. Phys. 34, 1 (2008)

    Article  Google Scholar 

  8. J.H. Mattei, I. Hanski, O. Gaggiotti, Ecology, Genetics, and Evolution of Metapopulations (Elsevier Academic Press, Amsterdam, 2004)

    Google Scholar 

  9. M.Y. Kim, R. Roy, J.L. Aron, T.W. Carr, I.B. Schwartz, Phys. Rev. Lett. 94, 088101 (2005)

    Article  ADS  Google Scholar 

  10. T.R. Malthus, An Essay on the Principle of Population (J Johnson, London, 1798)

    Google Scholar 

  11. P. Vineis, M. Berwick, Int. J. Epidemiol. 35, 1151 (2006)

    Article  Google Scholar 

  12. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  13. M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  14. M. Mobilia, I.T. Georgiev, U.C. Täuber, J. Stat. Phys. 128, 447 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Butler, N. Goldenfeld, Phys. Rev. E 80, 030902 (2009)

    Article  ADS  Google Scholar 

  16. T. Butler, N. Goldenfeld, Phys. Rev. E 84, 011112 (2011)

    Article  ADS  Google Scholar 

  17. U.C. Täuber, J. Phys. A Math. Theor. 45, 405002 (2012)

    Article  Google Scholar 

  18. U. Dobramysl, M. Mobilia, M. Pleimling, U.C. Täuber, J. Phys. A Math. Theor. 51, 063001 (2018)

    Article  ADS  Google Scholar 

  19. H. Matsuda, N. Ogita, A. Sasaki, K. Satō, Prog. Theor. Exp. 88, 1035 (1992)

    Article  ADS  Google Scholar 

  20. J.E. Satulovsky, T. Tomé, Phys. Rev. E 49, 5073 (1994)

    Article  ADS  Google Scholar 

  21. L. Frachebourg, P.L. Krapivsky, E. Ben-Naim, Phys. Rev. Lett. 77(10), 2125 (1996)

    Article  ADS  Google Scholar 

  22. L. Frachebourg, P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 54(6), 6186 (1996)

    Article  ADS  Google Scholar 

  23. Q. He, M. Mobilia, U.C. Täuber, Phys. Rev. E 82, 051909 (2010)

    Article  ADS  Google Scholar 

  24. Q. He, M. Mobilia, U.C. Täuber, Eur. Phys. J. B 82, 97 (2011)

    Article  ADS  Google Scholar 

  25. S. Rulands, A. Zielinski, E. Frey, Phys. Rev. E 87, 52710 (2013)

    Article  ADS  Google Scholar 

  26. A. Szolnoki, M. Perc, New J. Phys. 17, 113033 (2015)

    Article  ADS  Google Scholar 

  27. A. Szolnoki, M. Perc, Sci. Rep. 6, 38608 (2016)

    Article  ADS  Google Scholar 

  28. R. May, W. Leonard, SIAM J. Appl. Math. 29, 243 (1975)

    Article  MathSciNet  Google Scholar 

  29. D. Labavić, H. Meyer-Ortmanns, J. Stat. Mech. Theory Exp. 2016, 113402 (2016)

    Article  Google Scholar 

  30. P.P. Avelino, B.F. de Oliveira, R.S. Trintin (2021). arXiv:2104.14276

  31. D. Bazeia, B. de Oliveira, J. Silva, A. Szolnoki, Chaos Solitons Fractals 141, 110356 (2020)

    Article  MathSciNet  Google Scholar 

  32. T. Reichenbach, M. Mobilia, E. Frey, J. Theor. Biol. 254, 368 (2008)

    Article  ADS  Google Scholar 

  33. T. Reichenbach, M. Mobilia, E. Frey, Nature 448, 1049 (2007)

    Article  ADS  Google Scholar 

  34. S.R. Serrao, U.C. Täuber, J. Phys. A Math. Theor. 50, 404005 (2017)

    Article  Google Scholar 

  35. G. Szabò, G. Fáth, Phys. Rep. 446, 97–216 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Szolnoki, M. Mobilia, L.L. Jiang, B. Szczesny, A.M. Rucklidge, M. Perc, J. R. Soc. Interface 11, 20140735 (2014)

    Article  Google Scholar 

  37. A. Szolnoki, B.F. de Oliveira, D. Bazeia, EPL (Europhys. Lett.) 131, 68001 (2020)

    Article  ADS  Google Scholar 

  38. M. Blahota, I. Blahota, A. Szolnoki, EPL (Europhys. Lett.) 131, 58002 (2020)

    Article  ADS  Google Scholar 

  39. M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 75, 052102 (2007)

    Article  ADS  Google Scholar 

  40. A. Szolnoki, M. Perc, EPL (Europhys. Lett.) 92, 38003 (2010)

    Article  ADS  Google Scholar 

  41. J.M. Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)

    Book  Google Scholar 

  42. S. Serrao, Ph.D. thesis, Virginia Polytechnic Institute and State University (2020). http://hdl.handle.net/ 10919/101782

Download references

Acknowledgements

We are grateful to Michel Pleimling and Priyanka for fruitful discussions and helpful comments. M. Lazarus Arnau contributed to a preliminary study concerning a distinct system of coupled ecologies, which in part motivated the present work. This research was sponsored by the Army Research Office and was accomplished under Grant no. W911NF17-1-0156. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Contributions

Both authors conceived and planned this study. S.R.S. wrote the Monte Carlo code, carried out the numerical simulations, performed the quantitative data analysis, and generated the figures. U.C.T. aided in the interpretation of the results. Both authors jointly prepared the manuscript.

Corresponding author

Correspondence to Uwe C. Täuber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrao, S.R., Täuber, U.C. Stabilizing spiral structures and population diversity in the asymmetric May–Leonard model through immigration. Eur. Phys. J. B 94, 175 (2021). https://doi.org/10.1140/epjb/s10051-021-00168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00168-x

Navigation