Skip to main content
Log in

Use of Game-Theoretical Methods in Biochemistry and Biophysics

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Evolutionary game theory can be considered as an extension of the theory of evolutionary optimisation in that two or more organisms (or more generally, units of replication) tend to optimise their properties in an interdependent way. Thus, the outcome of the strategy adopted by one species (e.g., as a result of mutation and selection) depends on the strategy adopted by the other species. In this review, the use of evolutionary game theory for analysing biochemical and biophysical systems is discussed. The presentation is illustrated by a number of instructive examples such as the competition between microorganisms using different metabolic pathways for adenosine triphosphate production, the secretion of extracellular enzymes, the growth of trees and photosynthesis. These examples show that, due to conflicts of interest, the global optimum (in the sense of being the best solution for the whole system) is not always obtained. For example, some yeast species use metabolic pathways that waste nutrients, and in a dense tree canopy, trees grow taller than would be optimal for biomass productivity. From the viewpoint of game theory, the examples considered can be described by the Prisoner’s Dilemma, snowdrift game, Tragedy of the Commons and rock–scissors–paper game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kacser, H., Beeby, R.: Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection. J. Mol. Evol. 20(1), 38–51 (1984). doi:10.1007/BF02101984

    Article  Google Scholar 

  2. Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman & Hall, New York (1996)

    MATH  Google Scholar 

  3. Meléndez-Hevia, E., Waddell, T.G., Heinrich, R., Montero, F.: Theoretical approaches to the evolutionary optimization of glycolysis – chemical analysis. Eur. J. Biochem. 244(2), 527–543 (1997). doi:10.1111/j.1432-1033.1997.t01-1-00527.x

    Article  Google Scholar 

  4. Edwards, J.S., Ramakrishna, R., Palsson, B.O.: Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77(1), 27–36 (2002). doi:10.1002/bit.10047

    Article  Google Scholar 

  5. Ebenhöh, O., Heinrich, R.: Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull. Math. Biol. 63(1), 21–55 (2001). doi:10.1006/bulm.2000.0197

    Article  Google Scholar 

  6. Stucki, J.W.: The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur. J. Biochem. 109(1), 269–283 (1980). doi:10.1111/j.1432-1033.1980.tb04792.x

    Article  Google Scholar 

  7. Schuster, S., Heinrich, R.: Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. I. Theoretical analysis. J. Math. Biol. 29(5), 425–442 (1991). doi:10.1007/BF00160470

    Article  MATH  Google Scholar 

  8. Thompson, J.N.: The Coevolutionary Process. University of Chicago Press, Chicago (1994)

    Google Scholar 

  9. Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  10. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    Google Scholar 

  11. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004). doi:10.1126/science.1093411

    Article  ADS  Google Scholar 

  13. Eigen, M., Winkler, R.: Das Spiel. Naturgesetze steuern den Zufall. Pieper, München (1975)

    Google Scholar 

  14. Schieving, F., Poorter, H.: Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytol. 143(1), 201–211 (1999). doi:10.1046/j.1469-8137.1999.00431.x

    Article  Google Scholar 

  15. Falster, D.S., Westoby, M.: Plant height and evolutionary games. Trends Ecol. Evol. 18(7), 337–343 (2003). doi:10.1016/S0169-5347(03)00061-2

    Article  Google Scholar 

  16. Anten, N.P.R.: Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann. Bot. (Lond.) 95(3), 495–506 (2005). doi:10.1093/aob/mci048

    Article  Google Scholar 

  17. Pfeiffer, T., Schuster, S., Bonhoeffer, S.: Cooperation and competition in the evolution of ATP-producing pathways. Science 292(5516), 504–507 (2001). doi:10.1126/science.1058079

    Article  ADS  Google Scholar 

  18. Greig, D., Travisano, M.: The Prisoner’s Dilemma and polymorphism in yeast SUC genes. Proc. R. Soc. B-Biol. Sci. 271, S25–S26 (2004)

    Article  Google Scholar 

  19. Kreft, J.U.: Biofilms promote altruism. Microbiology 150, 2751–2760 (2004). doi:10.1099/mic.0.26829-0

    Article  Google Scholar 

  20. Pfeiffer, T., Schuster, S.: Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 30(1), 20–25 (2005). doi:10.1016/j.tibs.2004.11.006

    Article  Google Scholar 

  21. Costa, E., Pérez, J., Kreft, J.U.: Why is metabolic labour divided in nitrification? Trends Microbiol. 14(5), 213–219 (2006). doi:10.1016/j.tim.2006.03.006

    Article  Google Scholar 

  22. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428(6983), 643–646 (2004). doi:10.1038/nature02360

    Article  ADS  Google Scholar 

  23. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968). doi:10.1126/science.162.3859.1243

    Article  ADS  Google Scholar 

  24. Doebeli, M., Hauert, C., Killingback, T.: The evolutionary origin of cooperators and defectors. Science 306(5697), 859–862 (2004). doi:10.1126/science.1101456

    Article  ADS  Google Scholar 

  25. Voet, D., Voet, J.G.: Biochemistry. Wiley, New York (2004)

    Google Scholar 

  26. Veiga, A., Griffin, A.S., Gardner, A., Diggle, S.P.: Cyanide-resistant respiration is frequent, but confined to yeasts incapable of aerobic fermentation. FEMS Microbiol. Lett. 190(1), 93–97 (2000). doi:10.1111/j.1574-6968.2000.tb09268.x

    Article  Google Scholar 

  27. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, MA (1991)

    MATH  Google Scholar 

  28. West, S.A., et al.: Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4(8), 597–607 (2006). doi:10.1038/nrmicro1461

    Article  Google Scholar 

  29. Frick, T., Schuster, S.: An example of the prisoner’s dilemma in biochemistry. Naturwissenschaften 90(7), 327–331 (2003). doi:10.1007/s00114-003-0434-3

    Article  ADS  Google Scholar 

  30. Murray, J.D.: Mathematical Biology. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Rieck, C.: Spieltheorie. Eine Einführung. Christian Rieck Verlag, Eschborn (2006)

    Google Scholar 

  32. Wolfe, K.: Evolutionary genomics: yeasts accelerate beyond BLAST. Curr. Biol. 14(10), R392–R394 (2004). doi:10.1016/j.cub.2004.05.015

    Article  Google Scholar 

  33. Conant, G.C., Wolfe, K.H.: Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Syst. Biol. 3, 129 (2007)

    Article  Google Scholar 

  34. MacLean, R.C., Gudelj, I.: Resource competition and social conflict in experimental populations of yeast. Nature 441(7092), 498–501 (2006). doi:10.1038/nature04624

    Article  ADS  Google Scholar 

  35. Cushing, J.M.: Periodic Lotka–Volterra competition equations. J. Math. Biol. 24(4), 381–403 (1986). doi:10.1007/BF01236888

    Article  MATH  MathSciNet  Google Scholar 

  36. Kerr, B., Neuhauser, C., Bohannan, B.J., Dean, A.M.: Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons’. Nature 442(7098), 75–78 (2006). doi:10.1038/nature04864

    Article  ADS  Google Scholar 

  37. Kreft, J.U.: Conflicts of interest in biofilms. Biofilms 1, 265–276 (2004). doi:10.1017/S1479050504001486

    Article  Google Scholar 

  38. Kreft, J.U., Bonhoeffer, S.: The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology 151, 637–641 (2005). doi:10.1099/mic.0.27415-0

    Article  Google Scholar 

  39. Carlson, M., Botstein, D.: Organization of the SUC gene family in Saccharomyces. Mol. Cell. Biol. 3(3), 351–359 (1983)

    Google Scholar 

  40. Vulic, M., Kolter, R.: Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics 158(2), 519–526 (2001)

    Google Scholar 

  41. Bonner, J.T.: First Signals: The Evolution of Multicellular Development. Princeton University Press, Princeton (2001)

    Google Scholar 

  42. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry. Worth, New York (2003)

    Google Scholar 

  43. Pellerin, L.: How astrocytes feed hungry neurons. Mol. Neurobiol. 32(1), 59–72 (2005). doi:10.1385/MN:32:1:059

    Article  MathSciNet  Google Scholar 

  44. Doebeli, M.: A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms. Popul. Ecol. 44(2), 59–70 (2002). doi:10.1007/s101440200008

    Article  Google Scholar 

  45. Pfeiffer, T., Bonhoeffer, S.: Evolution of cross-feeding in microbial populations. Am. Nat. 163(6), E126–E135 (2004). doi:10.1086/383593

    Article  Google Scholar 

  46. Warburg, O.: Origin of cancer cells. Science 123(3191), 309–314 (1956). doi:10.1126/science.123.3191.309

    Article  ADS  Google Scholar 

  47. Schulz, T.J., Thierbach, R., Voigt, A., Drewes, G., Mietzner, B., Steinberg, P., Pfeiffer, A.F., Ristow, M.: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth–Otto Warburg revisited. J. Biol. Chem. 281(2), 977–981 (2006). doi:10.1074/jbc.M511064200

    Article  Google Scholar 

  48. Gatenby, R.A., Vincent, T.L.: An evolutionary model of carcinogenesis. Cancer Res. 63(19), 6212–6220 (2003)

    Google Scholar 

  49. Gabriel, W., Burger, R.: Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41(1), 44–71 (1992). doi:10.1016/0040-5809(92)90049-Y

    Article  MATH  Google Scholar 

  50. Pfeiffer, T., Bonhoeffer, S.: An evolutionary scenario for the transition to undifferentiated multicellularity. Proc. Natl. Acad. Sci. USA 100(3), 1095–1098 (2003). doi:10.1073/pnas.0335420100

    Article  ADS  Google Scholar 

  51. Merrill, S.J.: Stochastic models of tumor growth and the probability of elimination by cytotoxic cells. J. Math. Biol. 20(3), 305–320 (1984). doi:10.1007/BF00275990

    Article  MATH  MathSciNet  Google Scholar 

  52. King, D.A.: The adaptive significance of tree height. Am. Nat. 135(6), 809–828 (1990). doi:10.1086/285075

    Article  Google Scholar 

  53. Bartel, H.G.: Considerations on the usefulness of the game-theory in chemistry. Z. Chem. 23(7), 269

  54. Goodman, J.M.: Solutions for chemistry: synthesis of experiment and calculation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 358(1766), 387–398 (2000)

    Article  ADS  Google Scholar 

  55. Kovács, I.A., Szalay, M.S., Csermely, P.: Water and molecular chaperones act as weak links of protein folding networks: Energy landscape and punctuated equilibrium changes point towards a game theory of proteins. FEBS Lett. 579(11), 2254–2260 (2005). doi:10.1016/j.febslet.2005.03.056

    Article  Google Scholar 

  56. Hauert, C., Szabo, G.: Game theory and physics. Am. J. Phys. 73(5), 405–414 (2005). doi:10.1119/1.1848514

    Article  ADS  MathSciNet  Google Scholar 

  57. Perc, M.: Coherence resonance in a spatial prisoner’s dilemma game. New J. Phys. 8, 22 (2006)

    Article  ADS  Google Scholar 

  58. Aledo, J.C., Pérez-Claros, J.A., Esteban del Valle, A.: Switching between cooperation and competition in the use of extracellular glucose. J. Mol. Evol. 65(3), 328–339 (2007). doi:10.1007/s00239-007-9014-z

    Article  Google Scholar 

  59. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055 (1999). doi:10.1103/PhysRevLett.82.1052

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999). doi:10.1103/PhysRevLett.83.3077

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Klarreich, E.: Playing by quantum rules. Nature 414(6861), 244–245 (2001). doi:10.1038/35104702

    Article  ADS  Google Scholar 

  62. Czaran, T.L., Hoekstra R.F., Pagie, L.: Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99(2), 786–790 (2002). doi:10.1073/pnas.012399899

    Article  ADS  Google Scholar 

  63. Neumann, G., Schuster, S.: Continuous model for the rock–scissors–paper game between bacteriocin producing bacteria. J. Math. Biol. 54(6), 815–846 (2007). doi:10.1007/s00285-006-0065-3

    Article  MATH  MathSciNet  Google Scholar 

  64. Fell, D.A., Small, J.R.: Fat synthesis in adipose-tissue – an examination of stoichiometric constraints. Biochem. J. 238(3), 781–786 (1986)

    Google Scholar 

  65. Watson, M.R.: A discrete model of bacterial metabolism. Comput. Appl. Biosci. 2(1), 23–27 (1986)

    Google Scholar 

  66. Varma, A., Palsson, B.O.: Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. 165(4), 477–502 (1993). doi:10.1006/jtbi.1993.1202

    Article  Google Scholar 

  67. Schuster, S., Fell, D.A.: In: Lengauer, T. (ed.) Bioinformatics: From Genomes to Therapies, pp. 755–805. Wiley-VCH, Weinheim (2007)

  68. Schuster, S., Pfeiffer, T., Fell, D.A.: Is maximization of molar yield in metabolic networks favoured by evolution? J. Theor. Biol. 252, 497–504 (2008)

    Article  Google Scholar 

  69. Spotorno, A.E.: Evolutionary medicine: an emergent basic science. Rev. Med. Chil. 133(2), 231–240 (2005) (in Spanish)

    Google Scholar 

  70. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (2006)

    Google Scholar 

  71. Keinan, A., Sandbank, B., Hilgetag, C.C., Meilijson, I., Ruppin, E.: Axiomatic scalable neurocontroller analysis via the Shapley value. Artif. Life 12(3), 333–352 (2006). doi:10.1162/artl.2006.12.3.333

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank David Fell (Oxford), Matjaz Perc (Maribor), Eytan Ruppin (Tel-Aviv) and Günter Theissen (Jena) for stimulating discussions. Financial support to A.S. by the German-Israeli Foundation is gratefully acknowledged. T.P. gratefully acknowledges support by Society in Science/The Branco Weiss Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, S., Kreft, JU., Schroeter, A. et al. Use of Game-Theoretical Methods in Biochemistry and Biophysics. J Biol Phys 34, 1–17 (2008). https://doi.org/10.1007/s10867-008-9101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9101-4

Keywords

Navigation