Skip to main content
Log in

Barrier escape from a truncated quartic potential driven by correlated Lévy noises with opposite correlation

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Within the numerical simulation method applied to the Langevin equation, the escape problem of particle moving in the truncated quartic potential driven by two types of correlated Lévy noise, i.e., Ornstein–Uhlenbeck Lévy noise and harmonic velocity Lévy noise, is studied. The dependence of the escape rate on the noise intensity parameter, the Lévy index, the noise correlation, and the particle mass is discussed. Results reveal that the correlation, especially the strong correlation, makes the power-law exponent \(\alpha (\mu )\) and the inverse coefficient \(\text {lnc}(\mu )\) present significantly different dependences on the Lévy index \(\mu \). Especially, because of the distinctly opposite correlation properties of these two noises, the escape rate shows entirely opposite phenomena, i.e., the escape rate of the particles driven by the Ornstein–Uhlenbeck Lévy noise decreases with correlation increasing, whereas the escape rate of the particles driven by the harmonic velocity Lévy noise increases instead. Since the particle becomes heavy with m increasing, for the two types of correlated Lévy flight, the escape rates both decrease monotonically with particle mass increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data supporting the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. M. de Jager, F.J. Weissing, P.M.J. Herman, B.A. Nolet, J. van de Koppel, Science 332, 1551 (2011)

    Article  ADS  Google Scholar 

  2. F. Lenz, T.C. Ings, L. Chittka, A.V. Chechkin, R. Klages, Phys. Rev. Lett. 108, 098103 (2012)

    Article  ADS  Google Scholar 

  3. P. Barthelemy, J. Bertolotti, D.S. Wiersma, Nature 453, 495 (2008)

    Article  ADS  Google Scholar 

  4. D.A. Kessler, E. Barkai, Phys. Rev. E 108, 230602 (2012)

    Google Scholar 

  5. M.J. Saxton, K. Jacobson, Annu. Rev. Biophys. Biomol. Struct. 26, 373 (1997)

    Article  Google Scholar 

  6. I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai, Y. Garini, Phys. Rev. Lett. 103, 018102 (2009)

    Article  ADS  Google Scholar 

  7. I.M. Sokolov, J. Mai, A. Blumen, Phys. Rev. Lett. 79, 857 (1997)

    Article  ADS  Google Scholar 

  8. M.A. Lomholt, T. Ambjömsson, R. Metzler, Phys. Rev. Lett. 95, 260603 (2005)

    Article  ADS  Google Scholar 

  9. Y. Sagi, M. Brook, I. Almog, N. Davidson, Phys. Rev. Lett. 108, 093002 (2012)

    Article  ADS  Google Scholar 

  10. A.A. Dubkov, B. Spagnolo, V.V. Uchaikin, Int. J. Bifurca. Chaos 18, 2649 (2008)

    Article  Google Scholar 

  11. P. Imkeller, I. Pavlyukevich, J. Phys. A: Math. Gen. 39, L237 (2006)

    Article  ADS  Google Scholar 

  12. T. Koren, A.V. Chechkin, J. Klafter, Phys. A 379, 10 (2007)

    Article  MathSciNet  Google Scholar 

  13. T. Koren, M.A. Lomholt, A.V. Chechkin, J. Klafter, R. Metzler, Phys. Rev. Lett. 99, 160602 (2007)

    Article  ADS  Google Scholar 

  14. A.A. Dubkov, B. Spagnolo, Eur. Phys. J. Special Topics 216, 31 (2013)

    Article  ADS  Google Scholar 

  15. A.A. Dubkov, A.A. Kharcheva, Europhys. Lett. 113, 30009 (2016)

    Article  ADS  Google Scholar 

  16. A.A. Kharcheva, A.A. Dubkov, B. Dybiec, B. Spagnolo, D. Valenti, J. Stat. Mech. , 054039 (2016)

  17. B. Dybiec, E. Gudowska-Nowak, E. Barkai, A.A. Dubkov, Phys. Rev. E 95, 052102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.A. Dubkov, B. Dybiec, B. Spagnolo, A. Kharcheva, C. Guarcello, D. Valenti, Phys. Rev. E 102, 042142 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. J.D. Bao, H.Y. Wang, Y. Jia, Y.Z. Zhuo, Phys. Rev. E 72, 051105 (2005)

    Article  ADS  Google Scholar 

  20. A.V. Chechkin, O.Y. Sliusarenko, R. Metzler, J. Klafter, Phys. Rev. E 75, 041101 (2007)

    Article  ADS  Google Scholar 

  21. A.V. Chechkin, V.Y. Gonchar, J. Klafter, R. Metzler, EPL 72, 348 (2005)

    Article  ADS  Google Scholar 

  22. P.D. Ditlevsen, Phys. Rev. E 60, 172 (1999)

    Article  ADS  Google Scholar 

  23. Z.W. Bai, M. Hu, Phys. A 428, 332 (2015)

    Article  Google Scholar 

  24. B. Dybiec, E. Gudowska-Nowak, P. Hänggi, Phys. Rev. E 75, 021109 (2007)

    Article  ADS  Google Scholar 

  25. M. Bier, Phys. Rev. E 97, 022113 (2018)

    Article  ADS  Google Scholar 

  26. T. Srokowski, Phys. Rev. E 85, 021118 (2012)

    Article  ADS  Google Scholar 

  27. V.P. Bongolan-Walsh, J.Q. Duan, T. Ózgókmen, Commun. Nonlinear. Sci. Numer. Simulat. 13, 1627 (2008)

    Article  ADS  Google Scholar 

  28. I. Eliazar, J. Klafter, Phys. A 376, 1 (2007)

    Article  MathSciNet  Google Scholar 

  29. A. Weron, M. Magdziarz, Phys. Rev. Lett. 105, 260603 (2010)

    Article  ADS  Google Scholar 

  30. M. Magdziarz, Phys. A 387, 123 (2008)

    Article  Google Scholar 

  31. I. Eliazar, J. Klafter, J. Phys. A: Math. Theor. 40, F307 (2007)

    Article  ADS  Google Scholar 

  32. I. Eliazar, J. Klafter, Phys. Rev. E 75, 031108 (2007)

    Article  ADS  Google Scholar 

  33. F.F. Li, X.S. Chen, J. Liu, J. Stat. Mech. 083209(2020)

  34. P. Garbaczewski, R. Olkiewica, J. Math. Phys. 41, 6843 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Hintze, I. Pavlyukevich, Bernoulli 20, 265 (2014)

    Article  MathSciNet  Google Scholar 

  36. A. Wylomaniska, A. Chechkin, J. Gajda, I.M. Sokolov, Phys. A 421, 412 (2015)

    Article  MathSciNet  Google Scholar 

  37. M. Hu, J.M. Zhang, J.D. Bao, J. Chem. Phys. 146, 204103 (2017)

    Article  ADS  Google Scholar 

  38. F.F. Li, P. Zhu, J.D. Bao, X.S. Chen, J. Liu, J. Stat. Mech. 043210(2021)

  39. I. Eliazar, J. Klafter, J. Stat. Phys. 119, 165–196 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.A. Dubkov, B. Spagnolo, Fluct. Noise Lett. 5, L267 (2005)

    Article  Google Scholar 

  41. S. Jespersen, R. Metzler, H.C. Fogedby, Phys. Rev. E 59, 2736 (1999)

    Article  ADS  Google Scholar 

  42. L. Schimansky-Geier, C. Zlicke, Z. Phys. B 79, 451 (1990)

    Article  ADS  Google Scholar 

  43. M.I. Dykman, R. Mannella, Phys. Rev. E 47, 3996 (1993)

    Article  ADS  Google Scholar 

  44. J.D. Bao, Y.L. Song, Q. Ji, Y.Z. Zhuo, Phys. Rev. E 72, 011113 (2005)

    Article  ADS  Google Scholar 

  45. J.D. Bao, P. Hänggi, Y.Z. Zhuo, Phys. Rev. E 72, 061107 (2005)

    Article  ADS  Google Scholar 

  46. J.M. Chambers, C.L. Mallows, B.W. Stuck, J. Am. Stat. Assoc. 71, 340 (1976)

    Article  Google Scholar 

  47. R. Weron, Statist. Probab. Lett. 28, 165 (1996)

    Article  MathSciNet  Google Scholar 

  48. D. Fulger, E. Scalas, G. Gemmano, Phys. Rev. E 77, 021122 (2008)

    Article  ADS  Google Scholar 

  49. Z.W. Bai, M. Hu, Phys. A 479, 91 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11605003, the Support Project of High-level Teachers in Beijing Municipal Universities Under Grant No. CIT&TCD201904034, and 2021 Postgraduate Research Capacity Enhancement Program of BTBU.

Author information

Authors and Affiliations

Authors

Contributions

P. Zhu carried out the calculations. J. Liu and P. Zhu designed and wrote the paper. All authors contributed to the scientific discussions and the preparation of the manuscript, and approved the final version of the manuscript.

Corresponding author

Correspondence to Jian Liu.

Appendices

Appendix A: Numerical algorithm of OULN

The OULN \(\xi (t)\) can be generated from the generalized OULP, the detailed introduction of the numerical algorithm is presented in our previous work [33]. Here we present a brief introduction.

Solving Eq. (1) by an inverse Laplace transform, we have

$$\begin{aligned} \xi (t)=e^{-\frac{t}{\tau _c}}\xi (0)+\frac{1}{\tau _c}\int _{0}^{t}e^{\frac{s-t}{\tau _c}}L(s)\,ds \end{aligned}$$
(A1)

and

$$\begin{aligned} \xi (t+\Delta {t})=e^{-\frac{\Delta {t}}{\tau _c}}\xi (t)+\frac{1}{\tau _c}e^{-\frac{t+\Delta {t}}{\tau _c}}\int _{t}^{t+\Delta {t}}e^{\frac{s}{\tau _c}}L(s)\,ds.\nonumber \\ \end{aligned}$$
(A2)

Introducing \(y=\frac{1}{\tau _c}e^{-\frac{t+\Delta {t}}{\tau _c}}\int _{t}^{t+\Delta {t}}e^{\frac{s}{\tau _c}}L(s)\,ds\), we have a characteristic function P(k),

$$\begin{aligned} P(k)= & {} \left<e^{-iky}\right> \nonumber \\= & {} \left<e^{-ik[\frac{1}{\tau _c}e^{-\frac{t+\Delta {t}}{\tau _c}}\int _{t}^{t+\Delta {t}}e^{\frac{s}{\tau _c}}L(s)\,ds]}\right> \nonumber \\= & {} e^{-\frac{D|k|^\mu }{\mu \tau _c^{\mu -1}}(1-e^{-\frac{\mu \Delta {t}}{\tau _c}})}. \end{aligned}$$
(A3)

Hence, we have

$$\begin{aligned} \xi (t+\Delta {t})=e^{-\frac{\Delta {t}}{\tau _c}}\xi (t)+\left[ {\frac{D}{\mu \tau _c^{\mu -1}}(1-e^{-\frac{\mu \Delta {t}}{\tau _c}})}\right] ^{\frac{1}{\mu }}L_{\mu },\nonumber \\ \end{aligned}$$
(A4)

in which \(L_{\mu }\) is a symmetric Lévy \(\mu \)-stable random number [46,47,48],

$$\begin{aligned} L_{\mu }=\left( -\frac{\ln u\cos {\phi }}{\cos [(1-\mu )\phi ]}\right) ^{(1-\frac{1}{\mu })}\frac{\sin (\mu \phi )}{\cos \phi }, \end{aligned}$$
(A5)

in which \(\phi = \pi (\nu -1/2)\) and \(u,\nu \in (0,1)\) are independent uniform random numbers.

Finally, the numerical simulation of the Langevin equation (10) is

$$\begin{aligned} x(t+\Delta {t})= & {} x(t)+v(t)\Delta {t}, \end{aligned}$$
(A6)
$$\begin{aligned} v(t+\Delta {t})= & {} v(t)-\gamma _0 v(t)\Delta {t}-\gamma _2 v^3(t)\Delta {t}\nonumber \\&+f(x(t))\Delta {t}+\xi (t)\Delta {t}. \end{aligned}$$
(A7)

Appendix B: Numerical algorithm of HVLN

The numerical algorithm of the Langevin equation driven by HVLN can be executed by the following process. Combining Eqs. (7), (8), and (10), we have

$$\begin{aligned} {\dot{x}}= & {} v, \nonumber \\ {\dot{v}}= & {} -\gamma v+f(x(t))+u(t), \nonumber \\ {\dot{\varepsilon }}(t)= & {} u(t), \nonumber \\ {\dot{u}}(t)+ & {} \Gamma u(t)+\Omega ^2 \varepsilon (t)=L(t), \end{aligned}$$
(B1)

and the numerical calculations can be executed by

$$\begin{aligned} x(t+\Delta {t})= & {} x(t)+v(t)\Delta {t}, \nonumber \\ v(t+\Delta {t})= & {} v(t)-\gamma v(t)\Delta {t}+f(x(t))\Delta {t}+u(t)\Delta {t}, \nonumber \\ \varepsilon (t+\Delta t)= & {} \varepsilon (t)+u(t)\Delta t, \nonumber \\ u(t+\Delta t)= & {} u(t)-\Gamma u(t)\Delta t+\Omega ^2 \varepsilon (t) \Delta (t)+(D \Delta t)^{\frac{1}{\mu }}L_{\mu },\nonumber \\ \end{aligned}$$
(B2)

in which \(L_{\mu }\) is generated from Eq. (A5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Zhang, C. & Liu, J. Barrier escape from a truncated quartic potential driven by correlated Lévy noises with opposite correlation. Eur. Phys. J. B 94, 154 (2021). https://doi.org/10.1140/epjb/s10051-021-00166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00166-z

Navigation